This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hicl.1 | ⊢ 𝐴 ∈ ℋ | |
| hicl.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hicl.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hicl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |