This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hsn0elch | ⊢ { 0ℎ } ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | snssi | ⊢ ( 0ℎ ∈ ℋ → { 0ℎ } ⊆ ℋ ) | |
| 3 | 1 2 | ax-mp | ⊢ { 0ℎ } ⊆ ℋ |
| 4 | 1 | elexi | ⊢ 0ℎ ∈ V |
| 5 | 4 | snid | ⊢ 0ℎ ∈ { 0ℎ } |
| 6 | 3 5 | pm3.2i | ⊢ ( { 0ℎ } ⊆ ℋ ∧ 0ℎ ∈ { 0ℎ } ) |
| 7 | velsn | ⊢ ( 𝑥 ∈ { 0ℎ } ↔ 𝑥 = 0ℎ ) | |
| 8 | velsn | ⊢ ( 𝑦 ∈ { 0ℎ } ↔ 𝑦 = 0ℎ ) | |
| 9 | oveq12 | ⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) = ( 0ℎ +ℎ 0ℎ ) ) | |
| 10 | 1 | hvaddlidi | ⊢ ( 0ℎ +ℎ 0ℎ ) = 0ℎ |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) = 0ℎ ) |
| 12 | ovex | ⊢ ( 𝑥 +ℎ 𝑦 ) ∈ V | |
| 13 | 12 | elsn | ⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ↔ ( 𝑥 +ℎ 𝑦 ) = 0ℎ ) |
| 14 | 11 13 | sylibr | ⊢ ( ( 𝑥 = 0ℎ ∧ 𝑦 = 0ℎ ) → ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 15 | 7 8 14 | syl2anb | ⊢ ( ( 𝑥 ∈ { 0ℎ } ∧ 𝑦 ∈ { 0ℎ } ) → ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 16 | 15 | rgen2 | ⊢ ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } |
| 17 | oveq2 | ⊢ ( 𝑦 = 0ℎ → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ 0ℎ ) ) | |
| 18 | hvmul0 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ·ℎ 0ℎ ) = 0ℎ ) | |
| 19 | 17 18 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ ) → ( 𝑥 ·ℎ 𝑦 ) = 0ℎ ) |
| 20 | ovex | ⊢ ( 𝑥 ·ℎ 𝑦 ) ∈ V | |
| 21 | 20 | elsn | ⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ↔ ( 𝑥 ·ℎ 𝑦 ) = 0ℎ ) |
| 22 | 19 21 | sylibr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 23 | 8 22 | sylan2b | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ { 0ℎ } ) → ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 24 | 23 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } |
| 25 | 16 24 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) |
| 26 | issh2 | ⊢ ( { 0ℎ } ∈ Sℋ ↔ ( ( { 0ℎ } ⊆ ℋ ∧ 0ℎ ∈ { 0ℎ } ) ∧ ( ∀ 𝑥 ∈ { 0ℎ } ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 +ℎ 𝑦 ) ∈ { 0ℎ } ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ { 0ℎ } ( 𝑥 ·ℎ 𝑦 ) ∈ { 0ℎ } ) ) ) | |
| 27 | 6 25 26 | mpbir2an | ⊢ { 0ℎ } ∈ Sℋ |
| 28 | 4 | fconst2 | ⊢ ( 𝑓 : ℕ ⟶ { 0ℎ } ↔ 𝑓 = ( ℕ × { 0ℎ } ) ) |
| 29 | hlim0 | ⊢ ( ℕ × { 0ℎ } ) ⇝𝑣 0ℎ | |
| 30 | breq1 | ⊢ ( 𝑓 = ( ℕ × { 0ℎ } ) → ( 𝑓 ⇝𝑣 0ℎ ↔ ( ℕ × { 0ℎ } ) ⇝𝑣 0ℎ ) ) | |
| 31 | 29 30 | mpbiri | ⊢ ( 𝑓 = ( ℕ × { 0ℎ } ) → 𝑓 ⇝𝑣 0ℎ ) |
| 32 | 28 31 | sylbi | ⊢ ( 𝑓 : ℕ ⟶ { 0ℎ } → 𝑓 ⇝𝑣 0ℎ ) |
| 33 | hlimuni | ⊢ ( ( 𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥 ) → 0ℎ = 𝑥 ) | |
| 34 | 33 | eleq1d | ⊢ ( ( 𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 0ℎ ∈ { 0ℎ } ↔ 𝑥 ∈ { 0ℎ } ) ) |
| 35 | 32 34 | sylan | ⊢ ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 0ℎ ∈ { 0ℎ } ↔ 𝑥 ∈ { 0ℎ } ) ) |
| 36 | 5 35 | mpbii | ⊢ ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) |
| 37 | 36 | gen2 | ⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) |
| 38 | isch2 | ⊢ ( { 0ℎ } ∈ Cℋ ↔ ( { 0ℎ } ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ { 0ℎ } ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ { 0ℎ } ) ) ) | |
| 39 | 27 37 38 | mpbir2an | ⊢ { 0ℎ } ∈ Cℋ |