This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h1de2.1 | ⊢ 𝐴 ∈ ℋ | |
| h1de2.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | h1de2bi | ⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | h1de2.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | his6 | ⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) |
| 5 | 4 | necon3bii | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ↔ 𝐵 ≠ 0ℎ ) |
| 6 | 1 2 | h1de2i | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 9 | 2 2 | hicli | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 10 | 9 | recclzi | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 11 | ax-hvmulass | ⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) | |
| 12 | 9 1 11 | mp3an23 | ⊢ ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 14 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 15 | 14 9 | divcan1zi | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) = 1 ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( 1 ·ℎ 𝐴 ) ) |
| 17 | 13 16 | eqtr3d | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( 1 ·ℎ 𝐴 ) ) |
| 18 | ax-hvmulid | ⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ 𝐴 ) = 𝐴 ) | |
| 19 | 1 18 | ax-mp | ⊢ ( 1 ·ℎ 𝐴 ) = 𝐴 |
| 20 | 17 19 | eqtrdi | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = 𝐴 ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = 𝐴 ) |
| 22 | 8 21 | eqtr3d | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 𝐴 ) |
| 23 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 24 | ax-hvmulass | ⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) | |
| 25 | 23 2 24 | mp3an23 | ⊢ ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 26 | 10 25 | syl | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 27 | mulcom | ⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) | |
| 28 | 10 23 27 | sylancl | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 29 | 23 9 | divreczi | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 30 | 28 29 | eqtr4d | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ) |
| 31 | 30 | oveq1d | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 32 | 26 31 | eqtr3d | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 34 | 22 33 | eqtr3d | ⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 36 | 23 9 | divclzi | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 37 | 2 | elexi | ⊢ 𝐵 ∈ V |
| 38 | 37 | snss | ⊢ ( 𝐵 ∈ ℋ ↔ { 𝐵 } ⊆ ℋ ) |
| 39 | 2 38 | mpbi | ⊢ { 𝐵 } ⊆ ℋ |
| 40 | occl | ⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) | |
| 41 | 39 40 | ax-mp | ⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
| 42 | 41 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Cℋ |
| 43 | 42 | chshii | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ |
| 44 | h1did | ⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | |
| 45 | 2 44 | ax-mp | ⊢ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) |
| 46 | shmulcl | ⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ ∧ ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | |
| 47 | 43 45 46 | mp3an13 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 48 | 36 47 | syl | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 49 | eleq1 | ⊢ ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | |
| 50 | 48 49 | syl5ibrcom | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 51 | 35 50 | impbid | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 52 | 5 51 | sylbir | ⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |