This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 21-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | h1de2ct.1 | ⊢ 𝐵 ∈ ℋ | |
| Assertion | h1de2ci | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2ct.1 | ⊢ 𝐵 ∈ ℋ | |
| 2 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 3 | occl | ⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
| 5 | 4 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Cℋ |
| 6 | 5 | cheli | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 ∈ ℋ ) |
| 7 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 8 | 1 7 | mpan2 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ·ℎ 𝐵 ) ∈ ℋ ) |
| 9 | eleq1 | ⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 ∈ ℋ ↔ ( 𝑥 ·ℎ 𝐵 ) ∈ ℋ ) ) | |
| 10 | 8 9 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℂ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ℋ ) ) |
| 11 | 10 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ℋ ) |
| 12 | eleq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | |
| 13 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) ) | |
| 14 | 13 | rexbidv | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ↔ ∃ 𝑥 ∈ ℂ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 15 | 12 14 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) ) ) |
| 16 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 17 | 16 1 | h1de2ctlem | ⊢ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( 𝑥 ·ℎ 𝐵 ) ) |
| 18 | 15 17 | dedth | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 19 | 6 11 18 | pm5.21nii | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |