This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for h1de2ci . (Contributed by NM, 19-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h1de2.1 | |- A e. ~H |
|
| h1de2.2 | |- B e. ~H |
||
| Assertion | h1de2ctlem | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC A = ( x .h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2.1 | |- A e. ~H |
|
| 2 | h1de2.2 | |- B e. ~H |
|
| 3 | 1 | elexi | |- A e. _V |
| 4 | 3 | elsn | |- ( A e. { 0h } <-> A = 0h ) |
| 5 | hsn0elch | |- { 0h } e. CH |
|
| 6 | 5 | ococi | |- ( _|_ ` ( _|_ ` { 0h } ) ) = { 0h } |
| 7 | 6 | eleq2i | |- ( A e. ( _|_ ` ( _|_ ` { 0h } ) ) <-> A e. { 0h } ) |
| 8 | ax-hvmul0 | |- ( B e. ~H -> ( 0 .h B ) = 0h ) |
|
| 9 | 2 8 | ax-mp | |- ( 0 .h B ) = 0h |
| 10 | 9 | eqeq2i | |- ( A = ( 0 .h B ) <-> A = 0h ) |
| 11 | 4 7 10 | 3bitr4ri | |- ( A = ( 0 .h B ) <-> A e. ( _|_ ` ( _|_ ` { 0h } ) ) ) |
| 12 | sneq | |- ( B = 0h -> { B } = { 0h } ) |
|
| 13 | 12 | fveq2d | |- ( B = 0h -> ( _|_ ` { B } ) = ( _|_ ` { 0h } ) ) |
| 14 | 13 | fveq2d | |- ( B = 0h -> ( _|_ ` ( _|_ ` { B } ) ) = ( _|_ ` ( _|_ ` { 0h } ) ) ) |
| 15 | 14 | eleq2d | |- ( B = 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A e. ( _|_ ` ( _|_ ` { 0h } ) ) ) ) |
| 16 | 11 15 | bitr4id | |- ( B = 0h -> ( A = ( 0 .h B ) <-> A e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
| 17 | 0cn | |- 0 e. CC |
|
| 18 | oveq1 | |- ( x = 0 -> ( x .h B ) = ( 0 .h B ) ) |
|
| 19 | 18 | rspceeqv | |- ( ( 0 e. CC /\ A = ( 0 .h B ) ) -> E. x e. CC A = ( x .h B ) ) |
| 20 | 17 19 | mpan | |- ( A = ( 0 .h B ) -> E. x e. CC A = ( x .h B ) ) |
| 21 | 16 20 | biimtrrdi | |- ( B = 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> E. x e. CC A = ( x .h B ) ) ) |
| 22 | 1 2 | h1de2bi | |- ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) ) |
| 23 | his6 | |- ( B e. ~H -> ( ( B .ih B ) = 0 <-> B = 0h ) ) |
|
| 24 | 2 23 | ax-mp | |- ( ( B .ih B ) = 0 <-> B = 0h ) |
| 25 | 24 | necon3bii | |- ( ( B .ih B ) =/= 0 <-> B =/= 0h ) |
| 26 | 1 2 | hicli | |- ( A .ih B ) e. CC |
| 27 | 2 2 | hicli | |- ( B .ih B ) e. CC |
| 28 | 26 27 | divclzi | |- ( ( B .ih B ) =/= 0 -> ( ( A .ih B ) / ( B .ih B ) ) e. CC ) |
| 29 | 25 28 | sylbir | |- ( B =/= 0h -> ( ( A .ih B ) / ( B .ih B ) ) e. CC ) |
| 30 | oveq1 | |- ( x = ( ( A .ih B ) / ( B .ih B ) ) -> ( x .h B ) = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) |
|
| 31 | 30 | rspceeqv | |- ( ( ( ( A .ih B ) / ( B .ih B ) ) e. CC /\ A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) -> E. x e. CC A = ( x .h B ) ) |
| 32 | 29 31 | sylan | |- ( ( B =/= 0h /\ A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) ) -> E. x e. CC A = ( x .h B ) ) |
| 33 | 32 | ex | |- ( B =/= 0h -> ( A = ( ( ( A .ih B ) / ( B .ih B ) ) .h B ) -> E. x e. CC A = ( x .h B ) ) ) |
| 34 | 22 33 | sylbid | |- ( B =/= 0h -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> E. x e. CC A = ( x .h B ) ) ) |
| 35 | 21 34 | pm2.61ine | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> E. x e. CC A = ( x .h B ) ) |
| 36 | snssi | |- ( B e. ~H -> { B } C_ ~H ) |
|
| 37 | occl | |- ( { B } C_ ~H -> ( _|_ ` { B } ) e. CH ) |
|
| 38 | 2 36 37 | mp2b | |- ( _|_ ` { B } ) e. CH |
| 39 | 38 | choccli | |- ( _|_ ` ( _|_ ` { B } ) ) e. CH |
| 40 | 39 | chshii | |- ( _|_ ` ( _|_ ` { B } ) ) e. SH |
| 41 | h1did | |- ( B e. ~H -> B e. ( _|_ ` ( _|_ ` { B } ) ) ) |
|
| 42 | 2 41 | ax-mp | |- B e. ( _|_ ` ( _|_ ` { B } ) ) |
| 43 | shmulcl | |- ( ( ( _|_ ` ( _|_ ` { B } ) ) e. SH /\ x e. CC /\ B e. ( _|_ ` ( _|_ ` { B } ) ) ) -> ( x .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
|
| 44 | 40 42 43 | mp3an13 | |- ( x e. CC -> ( x .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) |
| 45 | eleq1 | |- ( A = ( x .h B ) -> ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( x .h B ) e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
|
| 46 | 44 45 | syl5ibrcom | |- ( x e. CC -> ( A = ( x .h B ) -> A e. ( _|_ ` ( _|_ ` { B } ) ) ) ) |
| 47 | 46 | rexlimiv | |- ( E. x e. CC A = ( x .h B ) -> A e. ( _|_ ` ( _|_ ` { B } ) ) ) |
| 48 | 35 47 | impbii | |- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> E. x e. CC A = ( x .h B ) ) |