This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl , because it is not required that F is a function (actually, the hypothesis always holds for any proper class F ). (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 1-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzcl2.w | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) | ||
| Assertion | gsumzcl2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 8 | gsumzcl2.w | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) | |
| 9 | 2 | fvexi | ⊢ 0 ∈ V |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 11 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 12 | 6 5 10 11 | gsumcllem | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 14 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 15 | 4 5 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 17 | 13 16 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = 0 ) |
| 18 | 1 2 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 0 ∈ 𝐵 ) |
| 21 | 17 20 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| 22 | 21 | ex | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) ) |
| 23 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 24 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐺 ∈ Mnd ) |
| 25 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 26 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 27 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 28 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) | |
| 29 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) | |
| 30 | 29 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) |
| 31 | suppssdm | ⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 | |
| 32 | 31 6 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 34 | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ∧ ( 𝐹 supp 0 ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) | |
| 35 | 30 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) |
| 36 | ssid | ⊢ ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) | |
| 37 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) ) | |
| 38 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 40 | 39 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 41 | 36 40 | sseqtrrid | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 42 | eqid | ⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) | |
| 43 | 1 2 23 3 24 25 26 27 28 35 41 42 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 44 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 45 | 28 44 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 46 | f1f | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐴 ) | |
| 47 | 35 46 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐴 ) |
| 48 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐵 ) | |
| 49 | 26 47 48 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐵 ) |
| 50 | 49 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 51 | 1 23 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑘 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 52 | 51 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑘 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 53 | 24 52 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑘 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 54 | 45 50 53 | seqcl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ∈ 𝐵 ) |
| 55 | 43 54 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| 56 | 55 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) ) |
| 57 | 56 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) ) |
| 58 | 57 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) ) |
| 59 | fz1f1o | ⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) | |
| 60 | 8 59 | syl | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) |
| 61 | 22 58 60 | mpjaod | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |