This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for gsumval3 . (Contributed by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | |- B = ( Base ` G ) |
|
| gsumval3.0 | |- .0. = ( 0g ` G ) |
||
| gsumval3.p | |- .+ = ( +g ` G ) |
||
| gsumval3.z | |- Z = ( Cntz ` G ) |
||
| gsumval3.g | |- ( ph -> G e. Mnd ) |
||
| gsumval3.a | |- ( ph -> A e. V ) |
||
| gsumval3.f | |- ( ph -> F : A --> B ) |
||
| gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumval3.m | |- ( ph -> M e. NN ) |
||
| gsumval3.h | |- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
||
| gsumval3.n | |- ( ph -> ( F supp .0. ) C_ ran H ) |
||
| gsumval3.w | |- W = ( ( F o. H ) supp .0. ) |
||
| Assertion | gsumval3lem1 | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | |- B = ( Base ` G ) |
|
| 2 | gsumval3.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumval3.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumval3.z | |- Z = ( Cntz ` G ) |
|
| 5 | gsumval3.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumval3.a | |- ( ph -> A e. V ) |
|
| 7 | gsumval3.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumval3.m | |- ( ph -> M e. NN ) |
|
| 10 | gsumval3.h | |- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
|
| 11 | gsumval3.n | |- ( ph -> ( F supp .0. ) C_ ran H ) |
|
| 12 | gsumval3.w | |- W = ( ( F o. H ) supp .0. ) |
|
| 13 | 10 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> H : ( 1 ... M ) -1-1-> A ) |
| 14 | suppssdm | |- ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) |
|
| 15 | 12 14 | eqsstri | |- W C_ dom ( F o. H ) |
| 16 | f1f | |- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) |
|
| 17 | 10 16 | syl | |- ( ph -> H : ( 1 ... M ) --> A ) |
| 18 | fco | |- ( ( F : A --> B /\ H : ( 1 ... M ) --> A ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
|
| 19 | 7 17 18 | syl2anc | |- ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 20 | 15 19 | fssdm | |- ( ph -> W C_ ( 1 ... M ) ) |
| 21 | 20 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) |
| 22 | f1ores | |- ( ( H : ( 1 ... M ) -1-1-> A /\ W C_ ( 1 ... M ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) |
|
| 23 | 13 21 22 | syl2anc | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) |
| 24 | 12 | imaeq2i | |- ( H " W ) = ( H " ( ( F o. H ) supp .0. ) ) |
| 25 | 7 6 | fexd | |- ( ph -> F e. _V ) |
| 26 | ovex | |- ( 1 ... M ) e. _V |
|
| 27 | fex | |- ( ( H : ( 1 ... M ) --> A /\ ( 1 ... M ) e. _V ) -> H e. _V ) |
|
| 28 | 16 26 27 | sylancl | |- ( H : ( 1 ... M ) -1-1-> A -> H e. _V ) |
| 29 | 10 28 | syl | |- ( ph -> H e. _V ) |
| 30 | f1fun | |- ( H : ( 1 ... M ) -1-1-> A -> Fun H ) |
|
| 31 | 10 30 | syl | |- ( ph -> Fun H ) |
| 32 | 31 11 | jca | |- ( ph -> ( Fun H /\ ( F supp .0. ) C_ ran H ) ) |
| 33 | 25 29 32 | jca31 | |- ( ph -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) |
| 35 | imacosupp | |- ( ( F e. _V /\ H e. _V ) -> ( ( Fun H /\ ( F supp .0. ) C_ ran H ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) ) |
|
| 36 | 35 | imp | |- ( ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) |
| 37 | 34 36 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) |
| 38 | 24 37 | eqtrid | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( F supp .0. ) ) |
| 39 | 38 | f1oeq3d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) : W -1-1-onto-> ( H " W ) <-> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) ) |
| 40 | 23 39 | mpbid | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) |
| 41 | isof1o | |- ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
|
| 42 | 41 | ad2antll | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
| 43 | f1oco | |- ( ( ( H |` W ) : W -1-1-onto-> ( F supp .0. ) /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) -> ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) |
|
| 44 | 40 42 43 | syl2anc | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) |
| 45 | f1of | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) --> W ) |
|
| 46 | frn | |- ( f : ( 1 ... ( # ` W ) ) --> W -> ran f C_ W ) |
|
| 47 | 42 45 46 | 3syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran f C_ W ) |
| 48 | cores | |- ( ran f C_ W -> ( ( H |` W ) o. f ) = ( H o. f ) ) |
|
| 49 | f1oeq1 | |- ( ( ( H |` W ) o. f ) = ( H o. f ) -> ( ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) ) |
|
| 50 | 47 48 49 | 3syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) ) |
| 51 | 44 50 | mpbid | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) |
| 52 | fzfi | |- ( 1 ... M ) e. Fin |
|
| 53 | ssfi | |- ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) |
|
| 54 | 52 20 53 | sylancr | |- ( ph -> W e. Fin ) |
| 55 | 54 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W e. Fin ) |
| 56 | 12 | a1i | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W = ( ( F o. H ) supp .0. ) ) |
| 57 | 56 | imaeq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( H " ( ( F o. H ) supp .0. ) ) ) |
| 58 | 52 | a1i | |- ( ph -> ( 1 ... M ) e. Fin ) |
| 59 | 17 58 | fexd | |- ( ph -> H e. _V ) |
| 60 | 25 59 32 | jca31 | |- ( ph -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) |
| 61 | 60 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) |
| 62 | 61 36 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) |
| 63 | 57 62 | eqtrd | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( F supp .0. ) ) |
| 64 | 63 | f1oeq3d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) : W -1-1-onto-> ( H " W ) <-> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) ) |
| 65 | 23 64 | mpbid | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) |
| 66 | 55 65 | hasheqf1od | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( # ` W ) = ( # ` ( F supp .0. ) ) ) |
| 67 | 66 | oveq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( 1 ... ( # ` W ) ) = ( 1 ... ( # ` ( F supp .0. ) ) ) ) |
| 68 | 67 | f1oeq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) |
| 69 | 51 68 | mpbid | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) |