This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grimcnv | ⊢ ( 𝑆 ∈ UHGraph → ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ◡ 𝐹 ∈ ( 𝑇 GraphIso 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝑇 ) = ( Vtx ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝑇 ) = ( iEdg ‘ 𝑇 ) | |
| 5 | 1 2 3 4 | grimprop | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) |
| 7 | f1ocnv | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ◡ 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) → ◡ 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ) |
| 9 | vex | ⊢ 𝑗 ∈ V | |
| 10 | cnvexg | ⊢ ( 𝑗 ∈ V → ◡ 𝑗 ∈ V ) | |
| 11 | 9 10 | mp1i | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ◡ 𝑗 ∈ V ) |
| 12 | f1ocnv | ⊢ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ◡ 𝑗 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ◡ 𝑗 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ) |
| 14 | f1ofo | ⊢ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) | |
| 15 | 14 | ad2antrl | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) |
| 16 | foelcdmi | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) | |
| 17 | 15 16 | sylan | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) |
| 18 | 2fveq3 | ⊢ ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) | |
| 19 | fveq2 | ⊢ ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) | |
| 20 | 19 | imaeq2d | ⊢ ( 𝑖 = 𝑦 → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 21 | 18 20 | eqeq12d | ⊢ ( 𝑖 = 𝑦 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 22 | 21 | rspcv | ⊢ ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 24 | f1ocnvfv1 | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) = 𝑦 ) | |
| 25 | 24 | ad4ant23 | ⊢ ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) = 𝑦 ) |
| 26 | 25 | fveq2d | ⊢ ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
| 27 | f1of1 | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → 𝐹 : ( Vtx ‘ 𝑆 ) –1-1→ ( Vtx ‘ 𝑇 ) ) | |
| 28 | 27 | ad2antlr | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → 𝐹 : ( Vtx ‘ 𝑆 ) –1-1→ ( Vtx ‘ 𝑇 ) ) |
| 29 | 1 3 | uhgrss | ⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ) |
| 30 | 29 | ad5ant15 | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ) |
| 31 | f1imacnv | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1→ ( Vtx ‘ 𝑇 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) | |
| 32 | 28 30 31 | syl2an2r | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
| 33 | 32 | eqcomd | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 35 | 26 34 | eqtrd | ⊢ ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 36 | 35 | adantlr | ⊢ ( ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 37 | simplr | ⊢ ( ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) | |
| 38 | 37 | eqcomd | ⊢ ( ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) |
| 39 | 38 | imaeq2d | ⊢ ( ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) |
| 40 | 36 39 | eqtrd | ⊢ ( ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) |
| 41 | 40 | ex | ⊢ ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ) |
| 42 | 41 | ex | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ) ) |
| 43 | 23 42 | syld | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ) ) |
| 44 | 43 | ex | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ) ) ) |
| 45 | 44 | com23 | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ) ) ) |
| 46 | 45 | impr | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ) ) |
| 47 | eleq1 | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) ↔ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) ) | |
| 48 | 2fveq3 | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) ) | |
| 49 | fveq2 | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) | |
| 50 | 49 | imaeq2d | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 51 | 48 50 | eqeq12d | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ↔ ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 52 | 47 51 | imbi12d | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ↔ ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) |
| 53 | 52 | imbi2d | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ ( 𝑗 ‘ 𝑦 ) ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) ) |
| 54 | 46 53 | syl5ibcom | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) ) |
| 55 | 54 | com24 | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) ) |
| 56 | 55 | imp31 | ⊢ ( ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 57 | 56 | rexlimdva | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 58 | 17 57 | mpd | ⊢ ( ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 59 | 58 | ralrimiva | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 60 | 13 59 | jca | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ( ◡ 𝑗 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 61 | f1oeq1 | ⊢ ( 𝑓 = ◡ 𝑗 → ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ↔ ◡ 𝑗 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ) ) | |
| 62 | fveq1 | ⊢ ( 𝑓 = ◡ 𝑗 → ( 𝑓 ‘ 𝑥 ) = ( ◡ 𝑗 ‘ 𝑥 ) ) | |
| 63 | 62 | fveqeq2d | ⊢ ( 𝑓 = ◡ 𝑗 → ( ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ↔ ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 64 | 63 | ralbidv | ⊢ ( 𝑓 = ◡ 𝑗 → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 65 | 61 64 | anbi12d | ⊢ ( 𝑓 = ◡ 𝑗 → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ↔ ( ◡ 𝑗 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( ◡ 𝑗 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) |
| 66 | 11 60 65 | spcedv | ⊢ ( ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 67 | 66 | ex | ⊢ ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) |
| 68 | 67 | exlimdv | ⊢ ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) |
| 69 | 68 | impr | ⊢ ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 70 | grimdmrel | ⊢ Rel dom GraphIso | |
| 71 | 70 | ovrcl | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 72 | 71 | simprd | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → 𝑇 ∈ V ) |
| 73 | 71 | simpld | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → 𝑆 ∈ V ) |
| 74 | cnvexg | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ◡ 𝐹 ∈ V ) | |
| 75 | 2 1 4 3 | isgrim | ⊢ ( ( 𝑇 ∈ V ∧ 𝑆 ∈ V ∧ ◡ 𝐹 ∈ V ) → ( ◡ 𝐹 ∈ ( 𝑇 GraphIso 𝑆 ) ↔ ( ◡ 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) ) |
| 76 | 72 73 74 75 | syl3anc | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( ◡ 𝐹 ∈ ( 𝑇 GraphIso 𝑆 ) ↔ ( ◡ 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) ) |
| 77 | 76 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) → ( ◡ 𝐹 ∈ ( 𝑇 GraphIso 𝑆 ) ↔ ( ◡ 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑆 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ◡ 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) ) |
| 78 | 8 69 77 | mpbir2and | ⊢ ( ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) ∧ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) → ◡ 𝐹 ∈ ( 𝑇 GraphIso 𝑆 ) ) |
| 79 | 6 78 | mpdan | ⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ◡ 𝐹 ∈ ( 𝑇 GraphIso 𝑆 ) ) |
| 80 | 79 | ex | ⊢ ( 𝑆 ∈ UHGraph → ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ◡ 𝐹 ∈ ( 𝑇 GraphIso 𝑆 ) ) ) |