This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grimcnv | |- ( S e. UHGraph -> ( F e. ( S GraphIso T ) -> `' F e. ( T GraphIso S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 2 | eqid | |- ( Vtx ` T ) = ( Vtx ` T ) |
|
| 3 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 4 | eqid | |- ( iEdg ` T ) = ( iEdg ` T ) |
|
| 5 | 1 2 3 4 | grimprop | |- ( F e. ( S GraphIso T ) -> ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) |
| 6 | 5 | adantl | |- ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) -> ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) |
| 7 | f1ocnv | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) ) |
|
| 8 | 7 | ad2antrl | |- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) ) |
| 9 | vex | |- j e. _V |
|
| 10 | cnvexg | |- ( j e. _V -> `' j e. _V ) |
|
| 11 | 9 10 | mp1i | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> `' j e. _V ) |
| 12 | f1ocnv | |- ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) ) |
|
| 13 | 12 | ad2antrl | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) ) |
| 14 | f1ofo | |- ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
|
| 15 | 14 | ad2antrl | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
| 16 | foelcdmi | |- ( ( j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
|
| 17 | 15 16 | sylan | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
| 18 | 2fveq3 | |- ( i = y -> ( ( iEdg ` T ) ` ( j ` i ) ) = ( ( iEdg ` T ) ` ( j ` y ) ) ) |
|
| 19 | fveq2 | |- ( i = y -> ( ( iEdg ` S ) ` i ) = ( ( iEdg ` S ) ` y ) ) |
|
| 20 | 19 | imaeq2d | |- ( i = y -> ( F " ( ( iEdg ` S ) ` i ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) |
| 21 | 18 20 | eqeq12d | |- ( i = y -> ( ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) <-> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 22 | 21 | rspcv | |- ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 23 | 22 | adantl | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 24 | f1ocnvfv1 | |- ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ y e. dom ( iEdg ` S ) ) -> ( `' j ` ( j ` y ) ) = y ) |
|
| 25 | 24 | ad4ant23 | |- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( `' j ` ( j ` y ) ) = y ) |
| 26 | 25 | fveq2d | |- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( ( iEdg ` S ) ` y ) ) |
| 27 | f1of1 | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> F : ( Vtx ` S ) -1-1-> ( Vtx ` T ) ) |
|
| 28 | 27 | ad2antlr | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) -> F : ( Vtx ` S ) -1-1-> ( Vtx ` T ) ) |
| 29 | 1 3 | uhgrss | |- ( ( S e. UHGraph /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) |
| 30 | 29 | ad5ant15 | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) |
| 31 | f1imacnv | |- ( ( F : ( Vtx ` S ) -1-1-> ( Vtx ` T ) /\ ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) -> ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) = ( ( iEdg ` S ) ` y ) ) |
|
| 32 | 28 30 31 | syl2an2r | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) = ( ( iEdg ` S ) ` y ) ) |
| 33 | 32 | eqcomd | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 34 | 33 | adantr | |- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` y ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 35 | 26 34 | eqtrd | |- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 36 | 35 | adantlr | |- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 37 | simplr | |- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) |
|
| 38 | 37 | eqcomd | |- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` T ) ` ( j ` y ) ) ) |
| 39 | 38 | imaeq2d | |- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( `' F " ( F " ( ( iEdg ` S ) ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) |
| 40 | 36 39 | eqtrd | |- ( ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) /\ ( j ` y ) e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) |
| 41 | 40 | ex | |- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) |
| 42 | 41 | ex | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) |
| 43 | 23 42 | syld | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) |
| 44 | 43 | ex | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) -> ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) ) |
| 45 | 44 | com23 | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) ) |
| 46 | 45 | impr | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) ) |
| 47 | eleq1 | |- ( ( j ` y ) = x -> ( ( j ` y ) e. dom ( iEdg ` T ) <-> x e. dom ( iEdg ` T ) ) ) |
|
| 48 | 2fveq3 | |- ( ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( ( iEdg ` S ) ` ( `' j ` x ) ) ) |
|
| 49 | fveq2 | |- ( ( j ` y ) = x -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( ( iEdg ` T ) ` x ) ) |
|
| 50 | 49 | imaeq2d | |- ( ( j ` y ) = x -> ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) |
| 51 | 48 50 | eqeq12d | |- ( ( j ` y ) = x -> ( ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) <-> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 52 | 47 51 | imbi12d | |- ( ( j ` y ) = x -> ( ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) <-> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 53 | 52 | imbi2d | |- ( ( j ` y ) = x -> ( ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` ( j ` y ) ) ) = ( `' F " ( ( iEdg ` T ) ` ( j ` y ) ) ) ) ) <-> ( y e. dom ( iEdg ` S ) -> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 54 | 46 53 | syl5ibcom | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( ( j ` y ) = x -> ( y e. dom ( iEdg ` S ) -> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 55 | 54 | com24 | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( x e. dom ( iEdg ` T ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 56 | 55 | imp31 | |- ( ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 57 | 56 | rexlimdva | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) -> ( E. y e. dom ( iEdg ` S ) ( j ` y ) = x -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 58 | 17 57 | mpd | |- ( ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) /\ x e. dom ( iEdg ` T ) ) -> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) |
| 59 | 58 | ralrimiva | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) |
| 60 | 13 59 | jca | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 61 | f1oeq1 | |- ( f = `' j -> ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) <-> `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) ) ) |
|
| 62 | fveq1 | |- ( f = `' j -> ( f ` x ) = ( `' j ` x ) ) |
|
| 63 | 62 | fveqeq2d | |- ( f = `' j -> ( ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) <-> ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 64 | 63 | ralbidv | |- ( f = `' j -> ( A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) <-> A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 65 | 61 64 | anbi12d | |- ( f = `' j -> ( ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) <-> ( `' j : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( `' j ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 66 | 11 60 65 | spcedv | |- ( ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 67 | 66 | ex | |- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) -> ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 68 | 67 | exlimdv | |- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) ) -> ( E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) |
| 69 | 68 | impr | |- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) |
| 70 | grimdmrel | |- Rel dom GraphIso |
|
| 71 | 70 | ovrcl | |- ( F e. ( S GraphIso T ) -> ( S e. _V /\ T e. _V ) ) |
| 72 | 71 | simprd | |- ( F e. ( S GraphIso T ) -> T e. _V ) |
| 73 | 71 | simpld | |- ( F e. ( S GraphIso T ) -> S e. _V ) |
| 74 | cnvexg | |- ( F e. ( S GraphIso T ) -> `' F e. _V ) |
|
| 75 | 2 1 4 3 | isgrim | |- ( ( T e. _V /\ S e. _V /\ `' F e. _V ) -> ( `' F e. ( T GraphIso S ) <-> ( `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) /\ E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 76 | 72 73 74 75 | syl3anc | |- ( F e. ( S GraphIso T ) -> ( `' F e. ( T GraphIso S ) <-> ( `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) /\ E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 77 | 76 | ad2antlr | |- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> ( `' F e. ( T GraphIso S ) <-> ( `' F : ( Vtx ` T ) -1-1-onto-> ( Vtx ` S ) /\ E. f ( f : dom ( iEdg ` T ) -1-1-onto-> dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` S ) ` ( f ` x ) ) = ( `' F " ( ( iEdg ` T ) ` x ) ) ) ) ) ) |
| 78 | 8 69 77 | mpbir2and | |- ( ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) /\ ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) -> `' F e. ( T GraphIso S ) ) |
| 79 | 6 78 | mpdan | |- ( ( S e. UHGraph /\ F e. ( S GraphIso T ) ) -> `' F e. ( T GraphIso S ) ) |
| 80 | 79 | ex | |- ( S e. UHGraph -> ( F e. ( S GraphIso T ) -> `' F e. ( T GraphIso S ) ) ) |