This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grimco | ⊢ ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑇 ) = ( Vtx ‘ 𝑇 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑇 ) = ( iEdg ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) | |
| 5 | 1 2 3 4 | grimprop | ⊢ ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) → ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) |
| 6 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 8 | 6 1 7 3 | grimprop | ⊢ ( 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) ) |
| 9 | f1oco | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ) | |
| 10 | 9 | ad2ant2r | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) ) → ( 𝐹 ∘ 𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ) |
| 11 | vex | ⊢ 𝑓 ∈ V | |
| 12 | vex | ⊢ 𝑔 ∈ V | |
| 13 | 11 12 | coex | ⊢ ( 𝑓 ∘ 𝑔 ) ∈ V |
| 14 | 13 | a1i | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ V ) |
| 15 | f1oco | ⊢ ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) | |
| 16 | 15 | a1d | ⊢ ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ) |
| 17 | 16 | expcom | ⊢ ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ) ) |
| 18 | 17 | impd | ⊢ ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ) |
| 20 | 19 | imp | ⊢ ( ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) |
| 22 | 2fveq3 | ⊢ ( 𝑦 = 𝑖 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) | |
| 23 | fveq2 | ⊢ ( 𝑦 = 𝑖 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) | |
| 24 | 23 | imaeq2d | ⊢ ( 𝑦 = 𝑖 → ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑦 = 𝑖 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 26 | 25 | rspcv | ⊢ ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 29 | f1of | ⊢ ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝑔 ‘ 𝑖 ) ∈ dom ( iEdg ‘ 𝑇 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( 𝑔 ‘ 𝑖 ) ∈ dom ( iEdg ‘ 𝑇 ) ) |
| 33 | 2fveq3 | ⊢ ( 𝑥 = ( 𝑔 ‘ 𝑖 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) | |
| 34 | fveq2 | ⊢ ( 𝑥 = ( 𝑔 ‘ 𝑖 ) → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) | |
| 35 | 34 | imaeq2d | ⊢ ( 𝑥 = ( 𝑔 ‘ 𝑖 ) → ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 36 | 33 35 | eqeq12d | ⊢ ( 𝑥 = ( 𝑔 ‘ 𝑖 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ↔ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 37 | 36 | rspcv | ⊢ ( ( 𝑔 ‘ 𝑖 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 38 | 32 37 | syl | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 39 | 30 | adantr | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) ) |
| 41 | simpr | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) | |
| 42 | 41 | adantr | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) |
| 43 | 40 42 | fvco3d | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) = ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) = ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 46 | simpr | ⊢ ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) | |
| 47 | 45 46 | eqtrd | ⊢ ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 48 | 47 | ex | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 49 | 38 48 | syld | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 50 | 49 | impr | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 51 | imaeq2 | ⊢ ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 “ ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) | |
| 52 | imaco | ⊢ ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) | |
| 53 | 51 52 | eqtr4di | ⊢ ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) |
| 54 | 50 53 | sylan9eq | ⊢ ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) |
| 55 | 54 | ex | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 56 | 28 55 | syld | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 57 | 56 | exp31 | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 58 | 57 | com24 | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 59 | 58 | expimpd | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 60 | 59 | imp32 | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 61 | 60 | ralrimiv | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) |
| 62 | 21 61 | jca | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 63 | f1oeq1 | ⊢ ( 𝑗 = ( 𝑓 ∘ 𝑔 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ↔ ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ) | |
| 64 | fveq1 | ⊢ ( 𝑗 = ( 𝑓 ∘ 𝑔 ) → ( 𝑗 ‘ 𝑖 ) = ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) | |
| 65 | 64 | fveqeq2d | ⊢ ( 𝑗 = ( 𝑓 ∘ 𝑔 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 66 | 65 | ralbidv | ⊢ ( 𝑗 = ( 𝑓 ∘ 𝑔 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 67 | 63 66 | anbi12d | ⊢ ( 𝑗 = ( 𝑓 ∘ 𝑔 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ↔ ( ( 𝑓 ∘ 𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) |
| 68 | 14 62 67 | spcedv | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 69 | 68 | exp32 | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 70 | 69 | exlimdv | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 71 | 70 | expimpd | ⊢ ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) → ( ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 72 | 71 | com23 | ⊢ ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 73 | 72 | exlimdv | ⊢ ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) → ( ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 74 | 73 | imp31 | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) |
| 75 | 10 74 | jca | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) |
| 76 | 5 8 75 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) |
| 77 | grimdmrel | ⊢ Rel dom GraphIso | |
| 78 | 77 | ovrcl | ⊢ ( 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 79 | 78 | simpld | ⊢ ( 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) → 𝑆 ∈ V ) |
| 80 | 79 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → 𝑆 ∈ V ) |
| 81 | 77 | ovrcl | ⊢ ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) → ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) ) |
| 82 | 81 | simprd | ⊢ ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) → 𝑈 ∈ V ) |
| 83 | 82 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → 𝑈 ∈ V ) |
| 84 | coexg | ⊢ ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) | |
| 85 | 6 2 7 4 | isgrim | ⊢ ( ( 𝑆 ∈ V ∧ 𝑈 ∈ V ∧ ( 𝐹 ∘ 𝐺 ) ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) ↔ ( ( 𝐹 ∘ 𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 86 | 80 83 84 85 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) ↔ ( ( 𝐹 ∘ 𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) ) |
| 87 | 76 86 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) ) |