This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| qusadd.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | ||
| qusadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| qusadd.a | ⊢ ✚ = ( +g ‘ 𝐻 ) | ||
| Assertion | qusadd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ✚ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 + 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| 2 | qusadd.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| 3 | qusadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | qusadd.a | ⊢ ✚ = ( +g ‘ 𝐻 ) | |
| 5 | 1 | a1i | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) ) |
| 6 | 2 | a1i | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑉 = ( Base ‘ 𝐺 ) ) |
| 7 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 8 | eqid | ⊢ ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 ) | |
| 9 | 2 8 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er 𝑉 ) |
| 10 | 7 9 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er 𝑉 ) |
| 11 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 12 | 7 11 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 13 | 2 8 3 | eqgcpbl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝑎 ( 𝐺 ~QG 𝑆 ) 𝑝 ∧ 𝑏 ( 𝐺 ~QG 𝑆 ) 𝑞 ) → ( 𝑎 + 𝑏 ) ( 𝐺 ~QG 𝑆 ) ( 𝑝 + 𝑞 ) ) ) |
| 14 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 16 | 12 15 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 + 𝑞 ) ∈ 𝑉 ) |
| 17 | 5 6 10 12 13 16 3 4 | qusaddval | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ✚ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 + 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |