This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmpreima | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) e. ( SubGrp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | |- ( `' F " V ) C_ dom F |
|
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 3 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 4 | 2 3 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 5 | 4 | adantr | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 6 | 1 5 | fssdm | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) C_ ( Base ` S ) ) |
| 7 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 8 | 7 | adantr | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> S e. Grp ) |
| 9 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 10 | 2 9 | grpidcl | |- ( S e. Grp -> ( 0g ` S ) e. ( Base ` S ) ) |
| 11 | 8 10 | syl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 12 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 13 | 9 12 | ghmid | |- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 14 | 13 | adantr | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 15 | 12 | subg0cl | |- ( V e. ( SubGrp ` T ) -> ( 0g ` T ) e. V ) |
| 16 | 15 | adantl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` T ) e. V ) |
| 17 | 14 16 | eqeltrd | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( F ` ( 0g ` S ) ) e. V ) |
| 18 | 5 | ffnd | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> F Fn ( Base ` S ) ) |
| 19 | elpreima | |- ( F Fn ( Base ` S ) -> ( ( 0g ` S ) e. ( `' F " V ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. V ) ) ) |
|
| 20 | 18 19 | syl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( 0g ` S ) e. ( `' F " V ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. V ) ) ) |
| 21 | 11 17 20 | mpbir2and | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` S ) e. ( `' F " V ) ) |
| 22 | 21 | ne0d | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) =/= (/) ) |
| 23 | elpreima | |- ( F Fn ( Base ` S ) -> ( a e. ( `' F " V ) <-> ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) ) |
|
| 24 | 18 23 | syl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( a e. ( `' F " V ) <-> ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) ) |
| 25 | elpreima | |- ( F Fn ( Base ` S ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) |
|
| 26 | 18 25 | syl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) |
| 27 | 26 | adantr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) |
| 28 | 7 | ad2antrr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> S e. Grp ) |
| 29 | simprll | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> a e. ( Base ` S ) ) |
|
| 30 | simprrl | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> b e. ( Base ` S ) ) |
|
| 31 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 32 | 2 31 | grpcl | |- ( ( S e. Grp /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( a ( +g ` S ) b ) e. ( Base ` S ) ) |
| 33 | 28 29 30 32 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( a ( +g ` S ) b ) e. ( Base ` S ) ) |
| 34 | simpll | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> F e. ( S GrpHom T ) ) |
|
| 35 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 36 | 2 31 35 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
| 37 | 34 29 30 36 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
| 38 | simplr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> V e. ( SubGrp ` T ) ) |
|
| 39 | simprlr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` a ) e. V ) |
|
| 40 | simprrr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` b ) e. V ) |
|
| 41 | 35 | subgcl | |- ( ( V e. ( SubGrp ` T ) /\ ( F ` a ) e. V /\ ( F ` b ) e. V ) -> ( ( F ` a ) ( +g ` T ) ( F ` b ) ) e. V ) |
| 42 | 38 39 40 41 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( ( F ` a ) ( +g ` T ) ( F ` b ) ) e. V ) |
| 43 | 37 42 | eqeltrd | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` ( a ( +g ` S ) b ) ) e. V ) |
| 44 | elpreima | |- ( F Fn ( Base ` S ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) |
|
| 45 | 18 44 | syl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) |
| 46 | 45 | adantr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) |
| 47 | 33 43 46 | mpbir2and | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) |
| 48 | 47 | expr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) ) |
| 49 | 27 48 | sylbid | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( b e. ( `' F " V ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) ) |
| 50 | 49 | ralrimiv | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) ) |
| 51 | simprl | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> a e. ( Base ` S ) ) |
|
| 52 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 53 | 2 52 | grpinvcl | |- ( ( S e. Grp /\ a e. ( Base ` S ) ) -> ( ( invg ` S ) ` a ) e. ( Base ` S ) ) |
| 54 | 8 51 53 | syl2an2r | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` S ) ` a ) e. ( Base ` S ) ) |
| 55 | eqid | |- ( invg ` T ) = ( invg ` T ) |
|
| 56 | 2 52 55 | ghminv | |- ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` a ) ) = ( ( invg ` T ) ` ( F ` a ) ) ) |
| 57 | 56 | ad2ant2r | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( F ` ( ( invg ` S ) ` a ) ) = ( ( invg ` T ) ` ( F ` a ) ) ) |
| 58 | 55 | subginvcl | |- ( ( V e. ( SubGrp ` T ) /\ ( F ` a ) e. V ) -> ( ( invg ` T ) ` ( F ` a ) ) e. V ) |
| 59 | 58 | ad2ant2l | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` T ) ` ( F ` a ) ) e. V ) |
| 60 | 57 59 | eqeltrd | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( F ` ( ( invg ` S ) ` a ) ) e. V ) |
| 61 | elpreima | |- ( F Fn ( Base ` S ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) |
|
| 62 | 18 61 | syl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) |
| 63 | 62 | adantr | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) |
| 64 | 54 60 63 | mpbir2and | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` S ) ` a ) e. ( `' F " V ) ) |
| 65 | 50 64 | jca | |- ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) |
| 66 | 65 | ex | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) |
| 67 | 24 66 | sylbid | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( a e. ( `' F " V ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) |
| 68 | 67 | ralrimiv | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) |
| 69 | 2 31 52 | issubg2 | |- ( S e. Grp -> ( ( `' F " V ) e. ( SubGrp ` S ) <-> ( ( `' F " V ) C_ ( Base ` S ) /\ ( `' F " V ) =/= (/) /\ A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) ) |
| 70 | 8 69 | syl | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( `' F " V ) e. ( SubGrp ` S ) <-> ( ( `' F " V ) C_ ( Base ` S ) /\ ( `' F " V ) =/= (/) /\ A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) ) |
| 71 | 6 22 68 70 | mpbir3and | |- ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) e. ( SubGrp ` S ) ) |