This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexcl2.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| Assertion | gexcl2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → 𝐸 ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexcl2.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 4 | 1 3 | odcl2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 5 | 1 3 | oddvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 6 | 4 | nnzd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ) |
| 7 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 9 | hashnncl | ⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 11 | 8 10 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 12 | dvdsle | ⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) | |
| 13 | 6 11 12 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
| 14 | 5 13 | mpd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) |
| 15 | 11 | nnzd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
| 16 | fznn | ⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℤ → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) ) |
| 18 | 4 14 17 | mpbir2and | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) |
| 19 | 18 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) |
| 21 | 1 2 3 | gexcl3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) → 𝐸 ∈ ℕ ) |
| 22 | 20 21 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → 𝐸 ∈ ℕ ) |