This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the order of every group element is bounded by N , the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexod.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexod.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexod.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | gexcl3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝐸 ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexod.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexod.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexod.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 4 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝐺 ∈ Grp ) | |
| 5 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 6 | r19.2z | ⊢ ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) |
| 8 | elfzuz2 | ⊢ ( ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 9 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 10 | 8 9 | eleqtrrdi | ⊢ ( ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ℕ ) |
| 11 | 10 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ℕ ) |
| 12 | 7 11 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 13 | 12 | nnnn0d | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 14 | 13 | faccld | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 15 | elfzuzb | ⊢ ( ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑂 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑂 ‘ 𝑥 ) ) ) ) | |
| 16 | elnnuz | ⊢ ( ( 𝑂 ‘ 𝑥 ) ∈ ℕ ↔ ( 𝑂 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 17 | dvdsfac | ⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑂 ‘ 𝑥 ) ) ) → ( 𝑂 ‘ 𝑥 ) ∥ ( ! ‘ 𝑁 ) ) | |
| 18 | 16 17 | sylanbr | ⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑂 ‘ 𝑥 ) ) ) → ( 𝑂 ‘ 𝑥 ) ∥ ( ! ‘ 𝑁 ) ) |
| 19 | 15 18 | sylbi | ⊢ ( ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) → ( 𝑂 ‘ 𝑥 ) ∥ ( ! ‘ 𝑁 ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ( 𝑂 ‘ 𝑥 ) ∥ ( ! ‘ 𝑁 ) ) |
| 21 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝐺 ∈ Grp ) | |
| 22 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝑥 ∈ 𝑋 ) | |
| 23 | 10 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℕ ) |
| 24 | 23 | nnnn0d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 25 | 24 | faccld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 26 | 25 | nnzd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℤ ) |
| 27 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 28 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 29 | 1 3 27 28 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ ( ! ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝑥 ) ∥ ( ! ‘ 𝑁 ) ↔ ( ( ! ‘ 𝑁 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 30 | 21 22 26 29 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑂 ‘ 𝑥 ) ∥ ( ! ‘ 𝑁 ) ↔ ( ( ! ‘ 𝑁 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 31 | 20 30 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ! ‘ 𝑁 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 32 | 31 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) → ( ( ! ‘ 𝑁 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 33 | 32 | ralimdva | ⊢ ( 𝐺 ∈ Grp → ( ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) → ∀ 𝑥 ∈ 𝑋 ( ( ! ‘ 𝑁 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 34 | 33 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → ∀ 𝑥 ∈ 𝑋 ( ( ! ‘ 𝑁 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 35 | 1 2 27 28 | gexlem2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ! ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ! ‘ 𝑁 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) → 𝐸 ∈ ( 1 ... ( ! ‘ 𝑁 ) ) ) |
| 36 | 4 14 34 35 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝐸 ∈ ( 1 ... ( ! ‘ 𝑁 ) ) ) |
| 37 | elfznn | ⊢ ( 𝐸 ∈ ( 1 ... ( ! ‘ 𝑁 ) ) → 𝐸 ∈ ℕ ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∈ ( 1 ... 𝑁 ) ) → 𝐸 ∈ ℕ ) |