This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl2.1 | |- X = ( Base ` G ) |
|
| gexcl2.2 | |- E = ( gEx ` G ) |
||
| Assertion | gexcl2 | |- ( ( G e. Grp /\ X e. Fin ) -> E e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl2.1 | |- X = ( Base ` G ) |
|
| 2 | gexcl2.2 | |- E = ( gEx ` G ) |
|
| 3 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 4 | 1 3 | odcl2 | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) e. NN ) |
| 5 | 1 3 | oddvds2 | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 6 | 4 | nnzd | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) e. ZZ ) |
| 7 | 1 | grpbn0 | |- ( G e. Grp -> X =/= (/) ) |
| 8 | 7 | 3ad2ant1 | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> X =/= (/) ) |
| 9 | hashnncl | |- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 11 | 8 10 | mpbird | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( # ` X ) e. NN ) |
| 12 | dvdsle | |- ( ( ( ( od ` G ) ` x ) e. ZZ /\ ( # ` X ) e. NN ) -> ( ( ( od ` G ) ` x ) || ( # ` X ) -> ( ( od ` G ) ` x ) <_ ( # ` X ) ) ) |
|
| 13 | 6 11 12 | syl2anc | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( ( od ` G ) ` x ) || ( # ` X ) -> ( ( od ` G ) ` x ) <_ ( # ` X ) ) ) |
| 14 | 5 13 | mpd | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) <_ ( # ` X ) ) |
| 15 | 11 | nnzd | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( # ` X ) e. ZZ ) |
| 16 | fznn | |- ( ( # ` X ) e. ZZ -> ( ( ( od ` G ) ` x ) e. ( 1 ... ( # ` X ) ) <-> ( ( ( od ` G ) ` x ) e. NN /\ ( ( od ` G ) ` x ) <_ ( # ` X ) ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( ( od ` G ) ` x ) e. ( 1 ... ( # ` X ) ) <-> ( ( ( od ` G ) ` x ) e. NN /\ ( ( od ` G ) ` x ) <_ ( # ` X ) ) ) ) |
| 18 | 4 14 17 | mpbir2and | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) e. ( 1 ... ( # ` X ) ) ) |
| 19 | 18 | 3expa | |- ( ( ( G e. Grp /\ X e. Fin ) /\ x e. X ) -> ( ( od ` G ) ` x ) e. ( 1 ... ( # ` X ) ) ) |
| 20 | 19 | ralrimiva | |- ( ( G e. Grp /\ X e. Fin ) -> A. x e. X ( ( od ` G ) ` x ) e. ( 1 ... ( # ` X ) ) ) |
| 21 | 1 2 3 | gexcl3 | |- ( ( G e. Grp /\ A. x e. X ( ( od ` G ) ` x ) e. ( 1 ... ( # ` X ) ) ) -> E e. NN ) |
| 22 | 20 21 | syldan | |- ( ( G e. Grp /\ X e. Fin ) -> E e. NN ) |