This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponent of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexcl2.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| Assertion | gexdvds3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexcl2.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 4 | 1 3 | oddvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 6 | 5 | ralrimiva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 7 | hashcl | ⊢ ( 𝑋 ∈ Fin → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 9 | 8 | nn0zd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
| 10 | 1 2 3 | gexdvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( 𝐸 ∥ ( ♯ ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) ) |
| 11 | 9 10 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝐸 ∥ ( ♯ ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝑋 ) ) |