This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| genpcl.3 | ⊢ ( ℎ ∈ Q → ( 𝑓 <Q 𝑔 ↔ ( ℎ 𝐺 𝑓 ) <Q ( ℎ 𝐺 𝑔 ) ) ) | ||
| genpcl.4 | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | ||
| genpcl.5 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ℎ ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) | ||
| Assertion | genpcl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ∈ P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | genpcl.3 | ⊢ ( ℎ ∈ Q → ( 𝑓 <Q 𝑔 ↔ ( ℎ 𝐺 𝑓 ) <Q ( ℎ 𝐺 𝑔 ) ) ) | |
| 4 | genpcl.4 | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 5 | genpcl.5 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ℎ ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) | |
| 6 | 1 2 | genpn0 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) |
| 7 | 1 2 | genpss | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ⊆ Q ) |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 8 9 3 | caovord | ⊢ ( 𝑧 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 𝐺 𝑥 ) <Q ( 𝑧 𝐺 𝑦 ) ) ) |
| 11 | 1 2 10 4 | genpnnp | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) |
| 12 | dfpss2 | ⊢ ( ( 𝐴 𝐹 𝐵 ) ⊊ Q ↔ ( ( 𝐴 𝐹 𝐵 ) ⊆ Q ∧ ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) | |
| 13 | 7 11 12 | sylanbrc | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ⊊ Q ) |
| 14 | 1 2 5 | genpcd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 15 | 14 | alrimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | vex | ⊢ 𝑤 ∈ V | |
| 18 | 16 17 3 | caovord | ⊢ ( 𝑣 ∈ Q → ( 𝑧 <Q 𝑤 ↔ ( 𝑣 𝐺 𝑧 ) <Q ( 𝑣 𝐺 𝑤 ) ) ) |
| 19 | 16 17 4 | caovcom | ⊢ ( 𝑧 𝐺 𝑤 ) = ( 𝑤 𝐺 𝑧 ) |
| 20 | 1 2 18 19 | genpnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
| 21 | 15 20 | jcad | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ∧ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) ) |
| 22 | 21 | ralrimiv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∀ 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ( ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ∧ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
| 23 | elnp | ⊢ ( ( 𝐴 𝐹 𝐵 ) ∈ P ↔ ( ( ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ∧ ( 𝐴 𝐹 𝐵 ) ⊊ Q ) ∧ ∀ 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ( ∀ 𝑥 ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ∧ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) ) | |
| 24 | 6 13 22 23 | syl21anbrc | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ∈ P ) |