This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 1-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovcom.1 | ⊢ 𝐴 ∈ V | |
| caovcom.2 | ⊢ 𝐵 ∈ V | ||
| caovcom.3 | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | ||
| Assertion | caovcom | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcom.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovcom.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovcom.3 | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | |
| 4 | 1 2 | pm3.2i | ⊢ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) |
| 5 | 3 | a1i | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) ) |
| 6 | 5 | caovcomg | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) → ( 𝐴 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) ) |
| 7 | 1 4 6 | mp2an | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) |