This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovord.1 | ⊢ 𝐴 ∈ V | |
| caovord.2 | ⊢ 𝐵 ∈ V | ||
| caovord.3 | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | ||
| Assertion | caovord | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovord.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovord.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovord.3 | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | |
| 4 | oveq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐵 ) ) | |
| 6 | 4 5 | breq12d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 7 | 6 | bibi2d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑧 𝐹 𝑥 ) = ( 𝑧 𝐹 𝐴 ) ) | |
| 10 | 9 | breq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) |
| 11 | 8 10 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) ) |
| 12 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑧 𝐹 𝑦 ) = ( 𝑧 𝐹 𝐵 ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) |
| 15 | 12 14 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) |
| 16 | 11 15 | sylan9bb | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) ↔ ( 𝑧 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) ) |
| 18 | 1 2 17 3 | vtocl2 | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) |
| 19 | 7 18 | vtoclga | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |