This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operation on positive reals has no largest member. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| genpnmax.2 | ⊢ ( 𝑣 ∈ Q → ( 𝑧 <Q 𝑤 ↔ ( 𝑣 𝐺 𝑧 ) <Q ( 𝑣 𝐺 𝑤 ) ) ) | ||
| genpnmax.3 | ⊢ ( 𝑧 𝐺 𝑤 ) = ( 𝑤 𝐺 𝑧 ) | ||
| Assertion | genpnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | genpnmax.2 | ⊢ ( 𝑣 ∈ Q → ( 𝑧 <Q 𝑤 ↔ ( 𝑣 𝐺 𝑧 ) <Q ( 𝑣 𝐺 𝑤 ) ) ) | |
| 4 | genpnmax.3 | ⊢ ( 𝑧 𝐺 𝑤 ) = ( 𝑤 𝐺 𝑧 ) | |
| 5 | 1 2 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
| 6 | prnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑔 <Q 𝑦 ) | |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝐴 𝑔 <Q 𝑦 ) |
| 8 | 1 2 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑦 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 9 | 8 | exp4b | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐴 → ( ℎ ∈ 𝐵 → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 10 | 9 | com34 | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ℎ ∈ 𝐵 → ( 𝑦 ∈ 𝐴 → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 11 | 10 | imp32 | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 12 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) | |
| 13 | vex | ⊢ 𝑔 ∈ V | |
| 14 | vex | ⊢ 𝑦 ∈ V | |
| 15 | vex | ⊢ ℎ ∈ V | |
| 16 | 13 14 3 15 4 | caovord2 | ⊢ ( ℎ ∈ Q → ( 𝑔 <Q 𝑦 ↔ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
| 17 | 16 | biimpd | ⊢ ( ℎ ∈ Q → ( 𝑔 <Q 𝑦 → ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
| 18 | 12 17 | syl | ⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ( 𝑔 <Q 𝑦 → ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 <Q 𝑦 → ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) |
| 20 | 11 19 | anim12d | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑔 <Q 𝑦 ) → ( ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ∧ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) ) |
| 21 | breq2 | ⊢ ( 𝑥 = ( 𝑦 𝐺 ℎ ) → ( ( 𝑔 𝐺 ℎ ) <Q 𝑥 ↔ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) ) | |
| 22 | 21 | rspcev | ⊢ ( ( ( 𝑦 𝐺 ℎ ) ∈ ( 𝐴 𝐹 𝐵 ) ∧ ( 𝑔 𝐺 ℎ ) <Q ( 𝑦 𝐺 ℎ ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) |
| 23 | 20 22 | syl6 | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑔 <Q 𝑦 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
| 24 | 23 | adantlr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑔 <Q 𝑦 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
| 25 | 24 | expd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑔 <Q 𝑦 → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) ) |
| 26 | 25 | rexlimdv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑔 <Q 𝑦 → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
| 27 | 7 26 | mpd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) |
| 28 | 27 | an4s | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) |
| 29 | breq1 | ⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 <Q 𝑥 ↔ ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) | |
| 30 | 29 | rexbidv | ⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ↔ ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ( 𝑔 𝐺 ℎ ) <Q 𝑥 ) ) |
| 31 | 28 30 | imbitrrid | ⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
| 32 | 31 | expdcom | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) ) |
| 33 | 32 | rexlimdvv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |
| 34 | 5 33 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) 𝑓 <Q 𝑥 ) ) |