This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| genpnnp.3 | ⊢ ( 𝑧 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 𝐺 𝑥 ) <Q ( 𝑧 𝐺 𝑦 ) ) ) | ||
| genpnnp.4 | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | ||
| Assertion | genpnnp | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | genpnnp.3 | ⊢ ( 𝑧 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑧 𝐺 𝑥 ) <Q ( 𝑧 𝐺 𝑦 ) ) ) | |
| 4 | genpnnp.4 | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 5 | prpssnq | ⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) | |
| 6 | pssnel | ⊢ ( 𝐴 ⊊ Q → ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ P → ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ) |
| 8 | prpssnq | ⊢ ( 𝐵 ∈ P → 𝐵 ⊊ Q ) | |
| 9 | pssnel | ⊢ ( 𝐵 ⊊ Q → ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐵 ∈ P → ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) |
| 11 | 7 10 | anim12i | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ) |
| 12 | exdistrv | ⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) ) |
| 14 | prub | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( ¬ 𝑤 ∈ 𝐴 → 𝑓 <Q 𝑤 ) ) | |
| 15 | prub | ⊢ ( ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) → ( ¬ 𝑣 ∈ 𝐵 → 𝑔 <Q 𝑣 ) ) | |
| 16 | 14 15 | im2anan9 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) ∧ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
| 17 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ Q ) | |
| 18 | 17 | anim1i | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ) |
| 19 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ Q ) | |
| 20 | 19 | anim1i | ⊢ ( ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) → ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) |
| 21 | ltsonq | ⊢ <Q Or Q | |
| 22 | so2nr | ⊢ ( ( <Q Or Q ∧ ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ) | |
| 23 | 21 22 | mpan | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ) |
| 25 | simpr | ⊢ ( ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) → 𝑣 ∈ Q ) | |
| 26 | simpl | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) → 𝑓 ∈ Q ) | |
| 27 | 25 26 | anim12i | ⊢ ( ( ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ∧ ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ) → ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ) |
| 28 | 27 | ancoms | ⊢ ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ) |
| 29 | vex | ⊢ 𝑤 ∈ V | |
| 30 | vex | ⊢ 𝑣 ∈ V | |
| 31 | vex | ⊢ 𝑓 ∈ V | |
| 32 | vex | ⊢ 𝑔 ∈ V | |
| 33 | 29 30 3 31 4 32 | caovord3 | ⊢ ( ( ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ( 𝑤 <Q 𝑓 ↔ 𝑔 <Q 𝑣 ) ) |
| 34 | 33 | anbi2d | ⊢ ( ( ( 𝑣 ∈ Q ∧ 𝑓 ∈ Q ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ↔ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
| 35 | 28 34 | sylan | ⊢ ( ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑤 <Q 𝑓 ) ↔ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
| 36 | 24 35 | mtbid | ⊢ ( ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) ∧ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) |
| 37 | 36 | ex | ⊢ ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) → ¬ ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) ) ) |
| 38 | 37 | con2d | ⊢ ( ( ( 𝑓 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑔 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
| 39 | 18 20 38 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) ∧ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) ) → ( ( 𝑓 <Q 𝑤 ∧ 𝑔 <Q 𝑣 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
| 40 | 16 39 | syld | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) ∧ ( ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑣 ∈ Q ) ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
| 41 | 40 | an4s | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
| 42 | 41 | ex | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) |
| 43 | 42 | an4s | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) |
| 44 | 43 | ex | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) ) |
| 45 | 44 | com24 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) → ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) ) ) |
| 46 | 45 | imp32 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
| 47 | 46 | ralrimivv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐵 ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) |
| 48 | ralnex2 | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐵 ¬ ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ↔ ¬ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) | |
| 49 | 47 48 | sylib | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ¬ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) |
| 50 | 1 2 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ( ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑤 𝐺 𝑣 ) = ( 𝑓 𝐺 𝑔 ) ) ) |
| 52 | 49 51 | mtbird | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) |
| 53 | 52 | expcom | ⊢ ( ( ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ∧ ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 54 | 53 | ancoms | ⊢ ( ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ∧ ( ¬ 𝑤 ∈ 𝐴 ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 55 | 54 | an4s | ⊢ ( ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 56 | 2 | caovcl | ⊢ ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( 𝑤 𝐺 𝑣 ) ∈ Q ) |
| 57 | eleq2 | ⊢ ( ( 𝐴 𝐹 𝐵 ) = Q → ( ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝑤 𝐺 𝑣 ) ∈ Q ) ) | |
| 58 | 57 | biimprcd | ⊢ ( ( 𝑤 𝐺 𝑣 ) ∈ Q → ( ( 𝐴 𝐹 𝐵 ) = Q → ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 59 | 58 | con3d | ⊢ ( ( 𝑤 𝐺 𝑣 ) ∈ Q → ( ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
| 60 | 56 59 | syl | ⊢ ( ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) → ( ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
| 61 | 60 | ad2ant2r | ⊢ ( ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ( ¬ ( 𝑤 𝐺 𝑣 ) ∈ ( 𝐴 𝐹 𝐵 ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
| 62 | 55 61 | syldc | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
| 63 | 62 | exlimdvv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ Q ∧ ¬ 𝑤 ∈ 𝐴 ) ∧ ( 𝑣 ∈ Q ∧ ¬ 𝑣 ∈ 𝐵 ) ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) ) |
| 64 | 13 63 | mpd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ¬ ( 𝐴 𝐹 𝐵 ) = Q ) |