This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| Assertion | genpn0 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | prn0 | ⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) | |
| 4 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ 𝐴 ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐴 ∈ P → ∃ 𝑓 𝑓 ∈ 𝐴 ) |
| 6 | prn0 | ⊢ ( 𝐵 ∈ P → 𝐵 ≠ ∅ ) | |
| 7 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ 𝐵 ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝐵 ∈ P → ∃ 𝑔 𝑔 ∈ 𝐵 ) |
| 9 | 5 8 | anim12i | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑓 𝑓 ∈ 𝐴 ∧ ∃ 𝑔 𝑔 ∈ 𝐵 ) ) |
| 10 | 1 2 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 11 | ne0i | ⊢ ( ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐵 ) ≠ ∅ ) | |
| 12 | 0pss | ⊢ ( ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ↔ ( 𝐴 𝐹 𝐵 ) ≠ ∅ ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝑓 𝐺 𝑔 ) ∈ ( 𝐴 𝐹 𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) |
| 14 | 10 13 | syl6 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) |
| 15 | 14 | expcomd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑔 ∈ 𝐵 → ( 𝑓 ∈ 𝐴 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 16 | 15 | exlimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑔 𝑔 ∈ 𝐵 → ( 𝑓 ∈ 𝐴 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 17 | 16 | com23 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ 𝐴 → ( ∃ 𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 18 | 17 | exlimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑓 𝑓 ∈ 𝐴 → ( ∃ 𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 19 | 18 | impd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ∃ 𝑓 𝑓 ∈ 𝐴 ∧ ∃ 𝑔 𝑔 ∈ 𝐵 ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) ) |
| 20 | 9 19 | mpd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ∅ ⊊ ( 𝐴 𝐹 𝐵 ) ) |