This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| genpcd.2 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ℎ ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) | ||
| Assertion | genpcd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | genpcd.2 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ℎ ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) | |
| 4 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 5 | 4 | brel | ⊢ ( 𝑥 <Q 𝑓 → ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) ) |
| 6 | 5 | simpld | ⊢ ( 𝑥 <Q 𝑓 → 𝑥 ∈ Q ) |
| 7 | 1 2 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
| 9 | breq2 | ⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 ↔ 𝑥 <Q ( 𝑔 𝐺 ℎ ) ) ) | |
| 10 | 9 | biimpd | ⊢ ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 <Q ( 𝑔 𝐺 ℎ ) ) ) |
| 11 | 10 3 | sylan9r | ⊢ ( ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) ∧ 𝑓 = ( 𝑔 𝐺 ℎ ) ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| 12 | 11 | exp31 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ∈ Q → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 13 | 12 | an4s | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ∈ Q → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 14 | 13 | impancom | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 15 | 14 | rexlimdvv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 16 | 8 15 | sylbid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝑥 ∈ Q ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 17 | 16 | ex | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 ∈ Q → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 18 | 6 17 | syl5 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 19 | 18 | com34 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 <Q 𝑓 → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) ) |
| 20 | 19 | pm2.43d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 21 | 20 | com23 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) |