This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| Assertion | genpss | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ⊆ Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | 1 2 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
| 4 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) | |
| 5 | 4 | ex | ⊢ ( 𝐴 ∈ P → ( 𝑔 ∈ 𝐴 → 𝑔 ∈ Q ) ) |
| 6 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) | |
| 7 | 6 | ex | ⊢ ( 𝐵 ∈ P → ( ℎ ∈ 𝐵 → ℎ ∈ Q ) ) |
| 8 | 5 7 | im2anan9 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) ) ) |
| 9 | 2 | caovcl | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 𝐺 ℎ ) ∈ Q ) |
| 10 | 8 9 | syl6 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑔 𝐺 ℎ ) ∈ Q ) ) |
| 11 | eleq1a | ⊢ ( ( 𝑔 𝐺 ℎ ) ∈ Q → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → 𝑓 ∈ Q ) ) | |
| 12 | 10 11 | syl6 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ℎ ) → 𝑓 ∈ Q ) ) ) |
| 13 | 12 | rexlimdvv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) → 𝑓 ∈ Q ) ) |
| 14 | 3 13 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑓 ∈ Q ) ) |
| 15 | 14 | ssrdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ⊆ Q ) |