This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of an operation on reals. (Contributed by NM, 18-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| genpass.4 | ⊢ dom 𝐹 = ( P × P ) | ||
| genpass.5 | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( 𝑓 𝐹 𝑔 ) ∈ P ) | ||
| genpass.6 | ⊢ ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) = ( 𝑓 𝐺 ( 𝑔 𝐺 ℎ ) ) | ||
| Assertion | genpass | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | genpass.4 | ⊢ dom 𝐹 = ( P × P ) | |
| 4 | genpass.5 | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( 𝑓 𝐹 𝑔 ) ∈ P ) | |
| 5 | genpass.6 | ⊢ ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) = ( 𝑓 𝐺 ( 𝑔 𝐺 ℎ ) ) | |
| 6 | 1 2 | genpelv | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ) ) |
| 8 | 7 | anbi1d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) ) |
| 9 | 8 | exbidv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) ) |
| 10 | df-rex | ⊢ ( ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) | |
| 11 | ovex | ⊢ ( 𝑔 𝐺 ℎ ) ∈ V | |
| 12 | 11 | isseti | ⊢ ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) |
| 13 | 12 | biantrur | ⊢ ( 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 14 | 19.41v | ⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) | |
| 15 | 13 14 | bitr4i | ⊢ ( 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 16 | 15 | rexbii | ⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ ℎ ∈ 𝐶 ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 17 | rexcom4 | ⊢ ( ∃ ℎ ∈ 𝐶 ∃ 𝑡 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) | |
| 18 | 16 17 | bitri | ⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 19 | 18 | rexbii | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 20 | rexcom4 | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) | |
| 21 | oveq2 | ⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 𝐺 𝑡 ) = ( 𝑓 𝐺 ( 𝑔 𝐺 ℎ ) ) ) | |
| 22 | 21 5 | eqtr4di | ⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑓 𝐺 𝑡 ) = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) |
| 23 | 22 | eqeq2d | ⊢ ( 𝑡 = ( 𝑔 𝐺 ℎ ) → ( 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 24 | 23 | pm5.32i | ⊢ ( ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 25 | 24 | rexbii | ⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 26 | r19.41v | ⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) | |
| 27 | 25 26 | bitr3i | ⊢ ( ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 28 | 27 | rexbii | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑔 ∈ 𝐵 ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 29 | r19.41v | ⊢ ( ∃ 𝑔 ∈ 𝐵 ( ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) | |
| 30 | 28 29 | bitri | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 31 | 30 | exbii | ⊢ ( ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 ( 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 32 | 19 20 31 | 3bitri | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑡 = ( 𝑔 𝐺 ℎ ) ∧ 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 33 | 9 10 32 | 3bitr4g | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 34 | 33 | rexbidv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 35 | 4 | caovcl | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 𝐹 𝐶 ) ∈ P ) |
| 36 | 1 2 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 𝐹 𝐶 ) ∈ P ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 37 | 35 36 | sylan2 | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 38 | 37 | 3impb | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∈ ( 𝐵 𝐹 𝐶 ) 𝑥 = ( 𝑓 𝐺 𝑡 ) ) ) |
| 39 | 4 | caovcl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) ∈ P ) |
| 40 | 1 2 | genpelv | ⊢ ( ( ( 𝐴 𝐹 𝐵 ) ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 41 | 39 40 | stoic3 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 42 | 1 2 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ) ) |
| 43 | 42 | 3adant3 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ) ) |
| 44 | 43 | anbi1d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) ) |
| 45 | 44 | exbidv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) ) |
| 46 | df-rex | ⊢ ( ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) | |
| 47 | 19.41v | ⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) | |
| 48 | oveq1 | ⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( 𝑡 𝐺 ℎ ) = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) | |
| 49 | 48 | eqeq2d | ⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 50 | 49 | rexbidv | ⊢ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) → ( ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 51 | 50 | pm5.32i | ⊢ ( ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 52 | 51 | exbii | ⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 53 | ovex | ⊢ ( 𝑓 𝐺 𝑔 ) ∈ V | |
| 54 | 53 | isseti | ⊢ ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) |
| 55 | 54 | biantrur | ⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ( ∃ 𝑡 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 56 | 47 52 55 | 3bitr4ri | ⊢ ( ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 57 | 56 | rexbii | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 58 | rexcom4 | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ 𝑡 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) | |
| 59 | 57 58 | bitri | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 60 | 59 | rexbii | ⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 61 | rexcom4 | ⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑡 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) | |
| 62 | r19.41vv | ⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) | |
| 63 | 62 | exbii | ⊢ ( ∃ 𝑡 ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 64 | 60 61 63 | 3bitri | ⊢ ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ↔ ∃ 𝑡 ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 𝑡 = ( 𝑓 𝐺 𝑔 ) ∧ ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ) ) |
| 65 | 45 46 64 | 3bitr4g | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑡 ∈ ( 𝐴 𝐹 𝐵 ) ∃ ℎ ∈ 𝐶 𝑥 = ( 𝑡 𝐺 ℎ ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 66 | 41 65 | bitrd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐶 𝑥 = ( ( 𝑓 𝐺 𝑔 ) 𝐺 ℎ ) ) ) |
| 67 | 34 38 66 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) ) |
| 68 | 67 | eqrdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
| 69 | 0npr | ⊢ ¬ ∅ ∈ P | |
| 70 | 3 69 | ndmovass | ⊢ ( ¬ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
| 71 | 68 70 | pm2.61i | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) |