This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split the first element of a finite set of sequential integers. More generic than fzpred . Analogous to fzdif2 . (Contributed by AV, 12-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzdif1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) ∖ { 𝑀 } ) = ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑥 ∈ ( ( 𝑀 ... 𝑁 ) ∖ { 𝑀 } ) ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝑥 ∈ { 𝑀 } ) ) | |
| 2 | elsng | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑥 ∈ { 𝑀 } ↔ 𝑥 = 𝑀 ) ) | |
| 3 | 2 | necon3bbid | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ¬ 𝑥 ∈ { 𝑀 } ↔ 𝑥 ≠ 𝑀 ) ) |
| 4 | fzne1 | ⊢ ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 ≠ 𝑀 ) → 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) | |
| 5 | 3 4 | sylbida | ⊢ ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝑥 ∈ { 𝑀 } ) → 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 6 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 7 | 6 | uzidd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | peano2uz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | fzss1 | ⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 11 | 10 | sselda | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 12 | elfz2 | ⊢ ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 𝑀 + 1 ) ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ) | |
| 13 | 6 | zred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 14 | 13 | adantl | ⊢ ( ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 𝑀 + 1 ) ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 15 | simp3 | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 16 | zltp1le | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑀 < 𝑥 ↔ ( 𝑀 + 1 ) ≤ 𝑥 ) ) | |
| 17 | 6 15 16 | syl2anr | ⊢ ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 < 𝑥 ↔ ( 𝑀 + 1 ) ≤ 𝑥 ) ) |
| 18 | 17 | biimprd | ⊢ ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 + 1 ) ≤ 𝑥 → 𝑀 < 𝑥 ) ) |
| 19 | 18 | a1d | ⊢ ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑥 ≤ 𝑁 → ( ( 𝑀 + 1 ) ≤ 𝑥 → 𝑀 < 𝑥 ) ) ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑥 ≤ 𝑁 → ( ( 𝑀 + 1 ) ≤ 𝑥 → 𝑀 < 𝑥 ) ) ) ) |
| 21 | 20 | com24 | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑀 + 1 ) ≤ 𝑥 → ( 𝑥 ≤ 𝑁 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 < 𝑥 ) ) ) ) |
| 22 | 21 | imp42 | ⊢ ( ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 𝑀 + 1 ) ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 < 𝑥 ) |
| 23 | 14 22 | gtned | ⊢ ( ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 𝑀 + 1 ) ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑥 ≠ 𝑀 ) |
| 24 | 23 | ex | ⊢ ( ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ ( ( 𝑀 + 1 ) ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑥 ≠ 𝑀 ) ) |
| 25 | 12 24 | sylbi | ⊢ ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑥 ≠ 𝑀 ) ) |
| 26 | 25 | impcom | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑥 ≠ 𝑀 ) |
| 27 | nelsn | ⊢ ( 𝑥 ≠ 𝑀 → ¬ 𝑥 ∈ { 𝑀 } ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ¬ 𝑥 ∈ { 𝑀 } ) |
| 29 | 11 28 | jca | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝑥 ∈ { 𝑀 } ) ) |
| 30 | 29 | ex | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝑥 ∈ { 𝑀 } ) ) ) |
| 31 | 5 30 | impbid2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ ¬ 𝑥 ∈ { 𝑀 } ) ↔ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 32 | 1 31 | bitrid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑥 ∈ ( ( 𝑀 ... 𝑁 ) ∖ { 𝑀 } ) ↔ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 33 | 32 | eqrdv | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) ∖ { 𝑀 } ) = ( ( 𝑀 + 1 ) ... 𝑁 ) ) |