This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzpred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 2 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | peano2uz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | fzsplit2 | ⊢ ( ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 6 | 4 5 | mpancom | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 7 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 8 | 1 7 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 9 | 8 | uneq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |