This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split the last element of a finite set of sequential integers. More generic than fzsuc . (Contributed by Thierry Arnoux, 22-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzdif2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) ∖ { 𝑁 } ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzspl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) | |
| 2 | 1 | difeq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) ) |
| 3 | difun2 | ⊢ ( ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) ) |
| 5 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 6 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 7 | uznfz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) → ¬ 𝑁 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ 𝑁 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 9 | disjsn | ⊢ ( ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) |
| 11 | disjdif2 | ⊢ ( ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 13 | 4 12 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) ∖ { 𝑁 } ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |