This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 9 for funcsetcestrc . (Contributed by AV, 28-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| Assertion | funcsetcestrclem9 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ∧ ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
| 9 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 10 | 1 4 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 11 | 2 10 | eqtr4id | ⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
| 13 | 12 | biimpcd | ⊢ ( 𝑋 ∈ 𝐶 → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 15 | 14 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑋 ∈ 𝑈 ) |
| 16 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 ↔ 𝑌 ∈ 𝑈 ) ) |
| 17 | 16 | biimpcd | ⊢ ( 𝑌 ∈ 𝐶 → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 19 | 18 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑌 ∈ 𝑈 ) |
| 20 | 1 8 9 15 19 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 21 | 20 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ↔ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) ) |
| 22 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑍 ∈ 𝐶 ↔ 𝑍 ∈ 𝑈 ) ) |
| 23 | 22 | biimpcd | ⊢ ( 𝑍 ∈ 𝐶 → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 25 | 24 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑍 ∈ 𝑈 ) |
| 26 | 1 8 9 19 25 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) = ( 𝑍 ↑m 𝑌 ) ) |
| 27 | 26 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ↔ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) |
| 28 | 21 27 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ) ↔ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) ) |
| 29 | elmapi | ⊢ ( 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) → 𝐾 : 𝑌 ⟶ 𝑍 ) | |
| 30 | elmapi | ⊢ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) → 𝐻 : 𝑋 ⟶ 𝑌 ) | |
| 31 | fco | ⊢ ( ( 𝐾 : 𝑌 ⟶ 𝑍 ∧ 𝐻 : 𝑋 ⟶ 𝑌 ) → ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) | |
| 32 | 29 30 31 | syl2anr | ⊢ ( ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) → ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) |
| 33 | 32 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) |
| 34 | elmapg | ⊢ ( ( 𝑍 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) | |
| 35 | 34 | ancoms | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) |
| 36 | 35 | 3adant2 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) |
| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ↔ ( 𝐾 ∘ 𝐻 ) : 𝑋 ⟶ 𝑍 ) ) |
| 38 | 33 37 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) ) |
| 39 | fvresi | ⊢ ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑍 ↑m 𝑋 ) → ( ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 41 | 1 2 3 4 5 6 | funcsetcestrclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ) |
| 42 | 41 | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ) |
| 44 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑈 ∈ WUni ) |
| 45 | eqid | ⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) | |
| 46 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑋 ∈ 𝑈 ) |
| 47 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑌 ∈ 𝑈 ) |
| 48 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝑍 ∈ 𝑈 ) |
| 49 | 30 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐻 : 𝑋 ⟶ 𝑌 ) |
| 50 | 29 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐾 : 𝑌 ⟶ 𝑍 ) |
| 51 | 1 44 45 46 47 48 49 50 | setcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) = ( 𝐾 ∘ 𝐻 ) ) |
| 52 | 43 51 | fveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( I ↾ ( 𝑍 ↑m 𝑋 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 53 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 54 | 1 2 3 4 5 | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 55 | 54 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 57 | 1 2 3 4 5 | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 58 | 57 | 3ad2antr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 60 | 1 2 3 4 5 | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 61 | 60 | 3ad2antr3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 62 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 63 | eqid | ⊢ ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) | |
| 64 | eqid | ⊢ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) | |
| 65 | eqid | ⊢ ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) | |
| 66 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝜑 ) | |
| 67 | 3simpa | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) | |
| 68 | 67 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) |
| 69 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) | |
| 70 | 1 2 3 4 5 6 | funcsetcestrclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 71 | 66 68 69 70 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 72 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 73 | 72 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 74 | 73 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 75 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } | |
| 76 | 75 | 1strbas | ⊢ ( 𝑋 ∈ 𝐶 → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 77 | 76 | eqcomd | ⊢ ( 𝑋 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = 𝑋 ) |
| 78 | 77 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = 𝑋 ) |
| 79 | 78 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = 𝑋 ) |
| 80 | 74 79 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 81 | 80 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 82 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) |
| 83 | 82 | 3ad2antr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑌 ) = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) |
| 84 | 83 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
| 85 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } | |
| 86 | 85 | 1strbas | ⊢ ( 𝑌 ∈ 𝐶 → 𝑌 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
| 87 | 86 | eqcomd | ⊢ ( 𝑌 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 88 | 87 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 89 | 88 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 90 | 84 89 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 91 | 90 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 92 | 71 81 91 | feq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↔ 𝐻 : 𝑋 ⟶ 𝑌 ) ) |
| 93 | 49 92 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ) |
| 94 | 3simpc | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) | |
| 95 | 94 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) |
| 96 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) | |
| 97 | 1 2 3 4 5 6 | funcsetcestrclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 98 | 66 95 96 97 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 99 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑍 ) = { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) |
| 100 | 99 | 3ad2antr3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑍 ) = { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) |
| 101 | 100 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) ) |
| 102 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } = { 〈 ( Base ‘ ndx ) , 𝑍 〉 } | |
| 103 | 102 | 1strbas | ⊢ ( 𝑍 ∈ 𝐶 → 𝑍 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) ) |
| 104 | 103 | eqcomd | ⊢ ( 𝑍 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) = 𝑍 ) |
| 105 | 104 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) = 𝑍 ) |
| 106 | 105 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑍 〉 } ) = 𝑍 ) |
| 107 | 101 106 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = 𝑍 ) |
| 108 | 107 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) = 𝑍 ) |
| 109 | 98 91 108 | feq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) ↔ 𝐾 : 𝑌 ⟶ 𝑍 ) ) |
| 110 | 50 109 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑍 ) ) ) |
| 111 | 7 44 53 56 59 62 63 64 65 93 110 | estrcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 112 | 98 71 | coeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 113 | 111 112 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 114 | 40 52 113 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) ∧ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 115 | 114 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ∧ 𝐾 ∈ ( 𝑍 ↑m 𝑌 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 116 | 28 115 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 117 | 116 | 3impia | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶 ) ∧ ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑆 ) 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑆 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |