This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrcco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| estrcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| estrcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| estrcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| estrcco.a | ⊢ 𝐴 = ( Base ‘ 𝑋 ) | ||
| estrcco.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| estrcco.d | ⊢ 𝐷 = ( Base ‘ 𝑍 ) | ||
| estrcco.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| estrcco.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) | ||
| Assertion | estrcco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | estrcco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | estrcco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | estrcco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 6 | estrcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 7 | estrcco.a | ⊢ 𝐴 = ( Base ‘ 𝑋 ) | |
| 8 | estrcco.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 9 | estrcco.d | ⊢ 𝐷 = ( Base ‘ 𝑍 ) | |
| 10 | estrcco.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 11 | estrcco.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) | |
| 12 | 1 2 3 | estrccofval | ⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑧 = 𝑍 → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑍 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑍 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑍 ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑣 = 〈 𝑋 , 𝑌 〉 ) | |
| 17 | 16 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑣 ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 18 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) | |
| 19 | 4 5 18 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 21 | 17 20 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑣 ) = 𝑌 ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( Base ‘ ( 2nd ‘ 𝑣 ) ) = ( Base ‘ 𝑌 ) ) |
| 23 | 15 22 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) = ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) |
| 24 | 16 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 1st ‘ 𝑣 ) = ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( Base ‘ ( 1st ‘ 𝑣 ) ) = ( Base ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
| 26 | op1stg | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) | |
| 27 | 4 5 26 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
| 28 | 27 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( Base ‘ 𝑋 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( Base ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( Base ‘ 𝑋 ) ) |
| 30 | 25 29 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( Base ‘ ( 1st ‘ 𝑣 ) ) = ( Base ‘ 𝑋 ) ) |
| 31 | 22 30 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 32 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∘ 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) | |
| 33 | 23 31 32 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ ( 𝑣 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) , 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 34 | 4 5 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑈 × 𝑈 ) ) |
| 35 | ovex | ⊢ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ∈ V | |
| 36 | ovex | ⊢ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∈ V | |
| 37 | 35 36 | mpoex | ⊢ ( 𝑔 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) , 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ∈ V |
| 38 | 37 | a1i | ⊢ ( 𝜑 → ( 𝑔 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) , 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ∈ V ) |
| 39 | 12 33 34 6 38 | ovmpod | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) = ( 𝑔 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) , 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 40 | simpl | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → 𝑔 = 𝐺 ) | |
| 41 | simpr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) | |
| 42 | 40 41 | coeq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → ( 𝑔 ∘ 𝑓 ) = ( 𝐺 ∘ 𝐹 ) ) |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝑔 ∘ 𝑓 ) = ( 𝐺 ∘ 𝐹 ) ) |
| 44 | 8 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑌 ) ) |
| 45 | 44 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = 𝐵 ) |
| 46 | 9 | a1i | ⊢ ( 𝜑 → 𝐷 = ( Base ‘ 𝑍 ) ) |
| 47 | 46 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = 𝐷 ) |
| 48 | 45 47 | feq23d | ⊢ ( 𝜑 → ( 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ↔ 𝐺 : 𝐵 ⟶ 𝐷 ) ) |
| 49 | 11 48 | mpbird | ⊢ ( 𝜑 → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 50 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑍 ) ∈ V ) | |
| 51 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) ∈ V ) | |
| 52 | 50 51 | elmapd | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ↔ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 53 | 49 52 | mpbird | ⊢ ( 𝜑 → 𝐺 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) |
| 54 | 7 | a1i | ⊢ ( 𝜑 → 𝐴 = ( Base ‘ 𝑋 ) ) |
| 55 | 54 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝑋 ) = 𝐴 ) |
| 56 | 55 45 | feq23d | ⊢ ( 𝜑 → ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
| 57 | 10 56 | mpbird | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 58 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑋 ) ∈ V ) | |
| 59 | 51 58 | elmapd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↔ 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 60 | 57 59 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 61 | coexg | ⊢ ( ( 𝐺 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ V ) | |
| 62 | 53 60 61 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
| 63 | 39 43 53 60 62 | ovmpod | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |