This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| Assertion | funcsetcestrclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) |
| 8 | oveq12 | ⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( 𝑦 ↑m 𝑥 ) = ( 𝑌 ↑m 𝑋 ) ) | |
| 9 | 8 | ancoms | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑦 ↑m 𝑥 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 10 | 9 | reseq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( I ↾ ( 𝑦 ↑m 𝑥 ) ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( I ↾ ( 𝑦 ↑m 𝑥 ) ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
| 12 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐶 ) | |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝐶 ) | |
| 14 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑌 ↑m 𝑋 ) ∈ V ) | |
| 15 | 14 | resiexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ∈ V ) |
| 16 | 7 11 12 13 15 | ovmpod | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |