This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 7 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| Assertion | funcsetcestrclem7 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 8 | 1 2 3 4 5 6 | funcsetcestrclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ) |
| 9 | 8 | anabsan2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ) |
| 10 | eqid | ⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) | |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑈 ∈ WUni ) |
| 12 | 1 4 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 13 | 2 12 | eqtr4id | ⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 14 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
| 15 | 14 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝑈 ) |
| 16 | 1 10 11 15 | setcid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( Id ‘ 𝑆 ) ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |
| 17 | 9 16 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑋 ) ) = ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) ) |
| 18 | f1oi | ⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 | |
| 19 | f1of | ⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) | |
| 20 | 18 19 | ax-mp | ⊢ ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) | |
| 22 | 21 21 | elmapd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑋 ↑m 𝑋 ) ↔ ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) ) |
| 23 | 20 22 | mpbiri | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( I ↾ 𝑋 ) ∈ ( 𝑋 ↑m 𝑋 ) ) |
| 24 | fvresi | ⊢ ( ( I ↾ 𝑋 ) ∈ ( 𝑋 ↑m 𝑋 ) → ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) = ( I ↾ 𝑋 ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) = ( I ↾ 𝑋 ) ) |
| 26 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } | |
| 27 | 26 | 1strbas | ⊢ ( 𝑋 ∈ 𝐶 → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 28 | 21 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 29 | 28 | reseq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( I ↾ 𝑋 ) = ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) ) |
| 30 | 25 29 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( I ↾ ( 𝑋 ↑m 𝑋 ) ) ‘ ( I ↾ 𝑋 ) ) = ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) ) |
| 31 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 32 | 31 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 33 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 34 | 1 2 4 5 | setc1strwun | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |
| 35 | 7 33 11 34 | estrcid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( Id ‘ 𝐸 ) ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) = ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) ) |
| 36 | 32 35 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( I ↾ ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 37 | 17 30 36 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |