This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrccat.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| estrcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| Assertion | estrcid | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrccat.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 3 | estrcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | estrcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | 1 | estrccatid | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
| 8 | 2 7 | eqtrid | ⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) | |
| 10 | 9 | reseq2d | ⊢ ( 𝑥 = 𝑋 → ( I ↾ ( Base ‘ 𝑥 ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( I ↾ ( Base ‘ 𝑥 ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 12 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑋 ) ∈ V ) | |
| 13 | 12 | resiexd | ⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑋 ) ) ∈ V ) |
| 14 | 8 11 4 13 | fvmptd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |