This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 7 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| funcsetcestrc.c | |- C = ( Base ` S ) |
||
| funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
||
| funcsetcestrc.u | |- ( ph -> U e. WUni ) |
||
| funcsetcestrc.o | |- ( ph -> _om e. U ) |
||
| funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
||
| funcsetcestrc.e | |- E = ( ExtStrCat ` U ) |
||
| Assertion | funcsetcestrclem7 | |- ( ( ph /\ X e. C ) -> ( ( X G X ) ` ( ( Id ` S ) ` X ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| 2 | funcsetcestrc.c | |- C = ( Base ` S ) |
|
| 3 | funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
|
| 4 | funcsetcestrc.u | |- ( ph -> U e. WUni ) |
|
| 5 | funcsetcestrc.o | |- ( ph -> _om e. U ) |
|
| 6 | funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
|
| 7 | funcsetcestrc.e | |- E = ( ExtStrCat ` U ) |
|
| 8 | 1 2 3 4 5 6 | funcsetcestrclem5 | |- ( ( ph /\ ( X e. C /\ X e. C ) ) -> ( X G X ) = ( _I |` ( X ^m X ) ) ) |
| 9 | 8 | anabsan2 | |- ( ( ph /\ X e. C ) -> ( X G X ) = ( _I |` ( X ^m X ) ) ) |
| 10 | eqid | |- ( Id ` S ) = ( Id ` S ) |
|
| 11 | 4 | adantr | |- ( ( ph /\ X e. C ) -> U e. WUni ) |
| 12 | 1 4 | setcbas | |- ( ph -> U = ( Base ` S ) ) |
| 13 | 2 12 | eqtr4id | |- ( ph -> C = U ) |
| 14 | 13 | eleq2d | |- ( ph -> ( X e. C <-> X e. U ) ) |
| 15 | 14 | biimpa | |- ( ( ph /\ X e. C ) -> X e. U ) |
| 16 | 1 10 11 15 | setcid | |- ( ( ph /\ X e. C ) -> ( ( Id ` S ) ` X ) = ( _I |` X ) ) |
| 17 | 9 16 | fveq12d | |- ( ( ph /\ X e. C ) -> ( ( X G X ) ` ( ( Id ` S ) ` X ) ) = ( ( _I |` ( X ^m X ) ) ` ( _I |` X ) ) ) |
| 18 | f1oi | |- ( _I |` X ) : X -1-1-onto-> X |
|
| 19 | f1of | |- ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X --> X ) |
|
| 20 | 18 19 | ax-mp | |- ( _I |` X ) : X --> X |
| 21 | simpr | |- ( ( ph /\ X e. C ) -> X e. C ) |
|
| 22 | 21 21 | elmapd | |- ( ( ph /\ X e. C ) -> ( ( _I |` X ) e. ( X ^m X ) <-> ( _I |` X ) : X --> X ) ) |
| 23 | 20 22 | mpbiri | |- ( ( ph /\ X e. C ) -> ( _I |` X ) e. ( X ^m X ) ) |
| 24 | fvresi | |- ( ( _I |` X ) e. ( X ^m X ) -> ( ( _I |` ( X ^m X ) ) ` ( _I |` X ) ) = ( _I |` X ) ) |
|
| 25 | 23 24 | syl | |- ( ( ph /\ X e. C ) -> ( ( _I |` ( X ^m X ) ) ` ( _I |` X ) ) = ( _I |` X ) ) |
| 26 | eqid | |- { <. ( Base ` ndx ) , X >. } = { <. ( Base ` ndx ) , X >. } |
|
| 27 | 26 | 1strbas | |- ( X e. C -> X = ( Base ` { <. ( Base ` ndx ) , X >. } ) ) |
| 28 | 21 27 | syl | |- ( ( ph /\ X e. C ) -> X = ( Base ` { <. ( Base ` ndx ) , X >. } ) ) |
| 29 | 28 | reseq2d | |- ( ( ph /\ X e. C ) -> ( _I |` X ) = ( _I |` ( Base ` { <. ( Base ` ndx ) , X >. } ) ) ) |
| 30 | 25 29 | eqtrd | |- ( ( ph /\ X e. C ) -> ( ( _I |` ( X ^m X ) ) ` ( _I |` X ) ) = ( _I |` ( Base ` { <. ( Base ` ndx ) , X >. } ) ) ) |
| 31 | 1 2 3 | funcsetcestrclem1 | |- ( ( ph /\ X e. C ) -> ( F ` X ) = { <. ( Base ` ndx ) , X >. } ) |
| 32 | 31 | fveq2d | |- ( ( ph /\ X e. C ) -> ( ( Id ` E ) ` ( F ` X ) ) = ( ( Id ` E ) ` { <. ( Base ` ndx ) , X >. } ) ) |
| 33 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 34 | 1 2 4 5 | setc1strwun | |- ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. U ) |
| 35 | 7 33 11 34 | estrcid | |- ( ( ph /\ X e. C ) -> ( ( Id ` E ) ` { <. ( Base ` ndx ) , X >. } ) = ( _I |` ( Base ` { <. ( Base ` ndx ) , X >. } ) ) ) |
| 36 | 32 35 | eqtr2d | |- ( ( ph /\ X e. C ) -> ( _I |` ( Base ` { <. ( Base ` ndx ) , X >. } ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
| 37 | 17 30 36 | 3eqtrd | |- ( ( ph /\ X e. C ) -> ( ( X G X ) ` ( ( Id ` S ) ` X ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |