This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setc1strwun.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| setc1strwun.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| setc1strwun.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| setc1strwun.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| Assertion | setc1strwun | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setc1strwun.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | setc1strwun.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | setc1strwun.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 4 | setc1strwun.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 5 | 1 3 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 6 | 2 5 | eqtr4id | ⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 7 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
| 8 | 7 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝑈 ) |
| 9 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } | |
| 10 | 9 3 4 | 1strwun | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |
| 11 | 8 10 | syldan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ 𝑈 ) |