This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of sets is the identity function. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setccat.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| setcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| setcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| setcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| Assertion | setcid | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setccat.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | setcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 3 | setcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | setcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | 1 | setccatid | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) |
| 8 | 2 7 | eqtrid | ⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) | |
| 10 | 9 | reseq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( I ↾ 𝑥 ) = ( I ↾ 𝑋 ) ) |
| 11 | 4 | resiexd | ⊢ ( 𝜑 → ( I ↾ 𝑋 ) ∈ V ) |
| 12 | 8 10 4 11 | fvmptd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |