This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT , using cofuval2 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc , and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc . (Contributed by AV, 26-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcrngcsetc.r | ⊢ 𝑅 = ( RngCat ‘ 𝑈 ) | |
| funcrngcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcrngcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| funcrngcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcrngcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcrngcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) | ||
| Assertion | funcrngcsetc | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrngcsetc.r | ⊢ 𝑅 = ( RngCat ‘ 𝑈 ) | |
| 2 | funcrngcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcrngcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | funcrngcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcrngcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 6 | funcrngcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) | |
| 7 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | 7 4 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 11 | 10 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( Base ‘ 𝑥 ) ) ) |
| 12 | mpoeq12 | ⊢ ( ( 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ∧ 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑦 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 13 | 10 10 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑦 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 14 | 7 2 8 9 4 11 13 | funcestrcsetc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 15 | df-br | ⊢ ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ↔ 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝜑 → 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 18 | 1 17 4 | rngcbas | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( 𝑈 ∩ Rng ) ) |
| 19 | incom | ⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Rng ∩ 𝑈 ) ) |
| 21 | eqid | ⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) | |
| 22 | 1 17 4 21 | rngchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) = ( RngHom ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
| 23 | 7 4 20 22 | rnghmsubcsetc | ⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 24 | 16 23 | funcres | ⊢ ( 𝜑 → ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) ∈ ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func 𝑆 ) ) |
| 25 | mptexg | ⊢ ( 𝑈 ∈ WUni → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ∈ V ) | |
| 26 | 4 25 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ∈ V ) |
| 27 | fvex | ⊢ ( Hom ‘ 𝑅 ) ∈ V | |
| 28 | 27 | a1i | ⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ V ) |
| 29 | mpoexga | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝑈 ∈ WUni ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ∈ V ) | |
| 30 | 4 4 29 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ∈ V ) |
| 31 | 18 22 | rnghmresfn | ⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) Fn ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
| 32 | 26 28 30 31 | resfval2 | ⊢ ( 𝜑 → ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) = 〈 ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) , ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) 〉 ) |
| 33 | inss1 | ⊢ ( 𝑈 ∩ Rng ) ⊆ 𝑈 | |
| 34 | 18 33 | eqsstrdi | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ 𝑈 ) |
| 35 | 34 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) ) |
| 36 | 3 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 37 | 36 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) ) |
| 38 | 5 37 | eqtr2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) = 𝐹 ) |
| 39 | 35 38 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) = 𝐹 ) |
| 40 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 RngHom 𝑦 ) = ( 𝑎 RngHom 𝑦 ) ) | |
| 41 | 40 | reseq2d | ⊢ ( 𝑥 = 𝑎 → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( I ↾ ( 𝑎 RngHom 𝑦 ) ) ) |
| 42 | oveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑎 RngHom 𝑦 ) = ( 𝑎 RngHom 𝑏 ) ) | |
| 43 | 42 | reseq2d | ⊢ ( 𝑦 = 𝑏 → ( I ↾ ( 𝑎 RngHom 𝑦 ) ) = ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 44 | 41 43 | cbvmpov | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 45 | 44 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) ) |
| 46 | 3 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 47 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 48 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑏 ) ) | |
| 49 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑎 ) ) | |
| 50 | 48 49 | oveqan12rd | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 51 | 50 | reseq2d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 52 | 51 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 53 | 3 34 | eqsstrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 54 | 53 | sseld | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ 𝑈 ) ) |
| 55 | 54 | com12 | ⊢ ( 𝑎 ∈ 𝐵 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 57 | 56 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝑈 ) |
| 58 | 53 | sseld | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝑈 ) ) |
| 59 | 58 | adantld | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝑈 ) ) |
| 60 | 59 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝑈 ) |
| 61 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ∈ V ) | |
| 62 | 61 | resiexd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ∈ V ) |
| 63 | 47 52 57 60 62 | ovmpod | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 64 | 63 | reseq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) = ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) |
| 65 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 66 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) | |
| 67 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) | |
| 68 | 1 3 65 21 66 67 | rngchom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) = ( 𝑎 RngHom 𝑏 ) ) |
| 69 | 68 | reseq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) = ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 70 | eqid | ⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) | |
| 71 | eqid | ⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) | |
| 72 | 70 71 | rnghmf | ⊢ ( 𝑓 ∈ ( 𝑎 RngHom 𝑏 ) → 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) |
| 73 | fvex | ⊢ ( Base ‘ 𝑏 ) ∈ V | |
| 74 | fvex | ⊢ ( Base ‘ 𝑎 ) ∈ V | |
| 75 | 73 74 | pm3.2i | ⊢ ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) |
| 76 | 75 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) ) |
| 77 | elmapg | ⊢ ( ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) → ( 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) | |
| 78 | 76 77 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
| 79 | 72 78 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑎 RngHom 𝑏 ) → 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 80 | 79 | ssrdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 RngHom 𝑏 ) ⊆ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 81 | 80 | resabs1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 RngHom 𝑏 ) ) = ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) |
| 82 | 64 69 81 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( I ↾ ( 𝑎 RngHom 𝑏 ) ) = ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) |
| 83 | 36 46 82 | mpoeq123dva | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RngHom 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) ) |
| 84 | 6 45 83 | 3eqtrrd | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) = 𝐺 ) |
| 85 | 39 84 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) , ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) 〉 = 〈 𝐹 , 𝐺 〉 ) |
| 86 | 32 85 | eqtr2d | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) ) |
| 87 | 1 4 18 22 | rngcval | ⊢ ( 𝜑 → 𝑅 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) |
| 88 | 87 | oveq1d | ⊢ ( 𝜑 → ( 𝑅 Func 𝑆 ) = ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func 𝑆 ) ) |
| 89 | 24 86 88 | 3eltr4d | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
| 90 | df-br | ⊢ ( 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) | |
| 91 | 89 90 | sylibr | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |