This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcifuestrc.r | ⊢ 𝑅 = ( RngCat ‘ 𝑈 ) | |
| rngcifuestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| rngcifuestrc.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rngcifuestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rngcifuestrc.f | ⊢ ( 𝜑 → 𝐹 = ( I ↾ 𝐵 ) ) | ||
| rngcifuestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) | ||
| Assertion | rngcifuestrc | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝐸 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcifuestrc.r | ⊢ 𝑅 = ( RngCat ‘ 𝑈 ) | |
| 2 | rngcifuestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 3 | rngcifuestrc.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | rngcifuestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 5 | rngcifuestrc.f | ⊢ ( 𝜑 → 𝐹 = ( I ↾ 𝐵 ) ) | |
| 6 | rngcifuestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) | |
| 7 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 8 | 1 3 4 | rngcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 9 | incom | ⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Rng ∩ 𝑈 ) ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) | |
| 12 | 1 3 4 11 | rngchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 13 | 7 4 10 12 | rnghmsubcsetc | ⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 14 | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) | |
| 15 | eqid | ⊢ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) | |
| 16 | 1 4 8 12 | rngcval | ⊢ ( 𝜑 → 𝑅 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) |
| 18 | 3 17 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) |
| 19 | 18 | reseq2d | ⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) ) |
| 20 | 5 19 | eqtrd | ⊢ ( 𝜑 → 𝐹 = ( I ↾ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) ) |
| 21 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) |
| 22 | 12 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( RngHom ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ) |
| 23 | ovres | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( RngHom ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( RngHom ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) ) |
| 25 | 22 24 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 RngHom 𝑦 ) = ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) |
| 26 | 25 | reseq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) |
| 27 | 18 21 26 | mpoeq123dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) , 𝑦 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 28 | 6 27 | eqtrd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) , 𝑦 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 29 | 13 14 15 20 28 | inclfusubc | ⊢ ( 𝜑 → 𝐹 ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) 𝐺 ) |
| 30 | 2 | a1i | ⊢ ( 𝜑 → 𝐸 = ( ExtStrCat ‘ 𝑈 ) ) |
| 31 | 16 30 | oveq12d | ⊢ ( 𝜑 → ( 𝑅 Func 𝐸 ) = ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) ) |
| 32 | 31 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( 𝑅 Func 𝐸 ) 𝐺 ↔ 𝐹 ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) 𝐺 ) ) |
| 33 | 29 32 | mpbird | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝐸 ) 𝐺 ) |