This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfval.c | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| resfval.d | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| resfval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | ||
| resfval2.d | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | ||
| Assertion | resfval2 | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ↾f 𝐻 ) = 〈 ( 𝐹 ↾ 𝑆 ) , ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfval.c | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | resfval.d | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 3 | resfval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) | |
| 4 | resfval2.d | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 5 | opex | ⊢ 〈 𝐹 , 𝐺 〉 ∈ V | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ V ) |
| 7 | 6 2 | resfval | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ↾f 𝐻 ) = 〈 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 8 | op1stg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) | |
| 9 | 1 3 8 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 10 | 4 | fndmd | ⊢ ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 11 | 10 | dmeqd | ⊢ ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) ) |
| 12 | dmxpid | ⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝜑 → dom dom 𝐻 = 𝑆 ) |
| 14 | 9 13 | reseq12d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ↾ dom dom 𝐻 ) = ( 𝐹 ↾ 𝑆 ) ) |
| 15 | op2ndg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋 ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) | |
| 16 | 1 3 15 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 17 | 16 | fveq1d | ⊢ ( 𝜑 → ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 18 | 17 | reseq1d | ⊢ ( 𝜑 → ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) |
| 19 | 10 18 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 21 | df-ov | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 22 | 20 21 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 23 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 24 | df-ov | ⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 25 | 23 24 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 26 | 22 25 | reseq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) |
| 27 | 26 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑆 × 𝑆 ) ↦ ( ( 𝐺 ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) |
| 28 | 19 27 | eqtrdi | ⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) ) |
| 29 | 14 28 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑧 ) ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 = 〈 ( 𝐹 ↾ 𝑆 ) , ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) 〉 ) |
| 30 | 7 29 | eqtrd | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ↾f 𝐻 ) = 〈 ( 𝐹 ↾ 𝑆 ) , ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 𝐺 𝑦 ) ↾ ( 𝑥 𝐻 𝑦 ) ) ) 〉 ) |