This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmsubcsetc.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| rnghmsubcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rnghmsubcsetc.b | ⊢ ( 𝜑 → 𝐵 = ( Rng ∩ 𝑈 ) ) | ||
| rnghmsubcsetc.h | ⊢ ( 𝜑 → 𝐻 = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | rnghmsubcsetc | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | rnghmsubcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | rnghmsubcsetc.b | ⊢ ( 𝜑 → 𝐵 = ( Rng ∩ 𝑈 ) ) | |
| 4 | rnghmsubcsetc.h | ⊢ ( 𝜑 → 𝐻 = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | 2 3 | rnghmsscmap | ⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ⊆cat ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 6 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 7 | 1 2 6 | estrchomfeqhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| 8 | 1 2 6 | estrchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 9 | 7 8 | eqtrd | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 10 | 5 4 9 | 3brtr4d | ⊢ ( 𝜑 → 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 11 | 1 2 3 4 | rnghmsubcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
| 12 | 1 2 3 4 | rnghmsubcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 13 | 11 12 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 15 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 16 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 17 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 18 | 1 | estrccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 19 | 2 18 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 20 | incom | ⊢ ( Rng ∩ 𝑈 ) = ( 𝑈 ∩ Rng ) | |
| 21 | 3 20 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 22 | 21 4 | rnghmresfn | ⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
| 23 | 15 16 17 19 22 | issubc2 | ⊢ ( 𝜑 → ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) ) |
| 24 | 10 14 23 | mpbir2and | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |