This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcres2c.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| funcres2c.e | ⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) | ||
| funcres2c.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| funcres2c.r | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| funcres2c.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| Assertion | funcres2c | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcres2c.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 2 | funcres2c.e | ⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) | |
| 3 | funcres2c.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | funcres2c.r | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | funcres2c.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 6 | orc | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ) |
| 8 | olc | ⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ) |
| 10 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 12 | eqid | ⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) | |
| 13 | inss2 | ⊢ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) ) |
| 15 | 11 12 3 14 | fullsubc | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ∈ ( Subcat ‘ 𝐷 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ∈ ( Subcat ‘ 𝐷 ) ) |
| 17 | 12 11 | homffn | ⊢ ( Homf ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) |
| 18 | xpss12 | ⊢ ( ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) ∧ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝐷 ) ) → ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) | |
| 19 | 13 13 18 | mp2an | ⊢ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) |
| 20 | fnssres | ⊢ ( ( ( Homf ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ∧ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) Fn ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) | |
| 21 | 17 19 20 | mp2an | ⊢ ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) Fn ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
| 22 | 21 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) Fn ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
| 23 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 24 | 23 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐹 Fn 𝐴 ) |
| 25 | 23 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ran 𝐹 ⊆ 𝑆 ) |
| 26 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 27 | 1 11 26 | funcf1 | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ) |
| 28 | 27 | frnd | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) | |
| 31 | 1 29 30 | funcf1 | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐸 ) ) |
| 32 | 31 | frnd | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ran 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
| 33 | 2 11 | ressbasss | ⊢ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐷 ) |
| 34 | 32 33 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
| 35 | 28 34 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
| 36 | 25 35 | ssind | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ran 𝐹 ⊆ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
| 37 | df-f | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) | |
| 38 | 24 36 37 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐹 : 𝐴 ⟶ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
| 39 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 41 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝑥 ∈ 𝐴 ) | |
| 42 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → 𝑦 ∈ 𝐴 ) | |
| 43 | 1 10 39 40 41 42 | funcf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 44 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 45 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) | |
| 46 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝑥 ∈ 𝐴 ) | |
| 47 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝑦 ∈ 𝐴 ) | |
| 48 | 1 10 44 45 46 47 | funcf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 49 | 2 39 | resshom | ⊢ ( 𝑆 ∈ 𝑉 → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
| 50 | 4 49 | syl | ⊢ ( 𝜑 → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
| 51 | 50 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
| 52 | 51 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 53 | 52 | feq3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 54 | 48 53 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 55 | 43 54 | jaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 | 55 | an32s | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 57 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
| 58 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 59 | 57 58 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
| 60 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 61 | 57 60 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) |
| 62 | 59 61 | ovresd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Homf ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 63 | 59 | elin2d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 64 | 61 | elin2d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 65 | 12 11 39 63 64 | homfval | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( Homf ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 66 | 62 65 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 67 | 66 | feq3d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 68 | 56 67 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 69 | 1 10 16 22 38 68 | funcres2b | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) 𝐺 ) ) |
| 70 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ) | |
| 71 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐶 ) ) | |
| 72 | 11 | ressinbas | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐷 ↾s 𝑆 ) = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
| 73 | 4 72 | syl | ⊢ ( 𝜑 → ( 𝐷 ↾s 𝑆 ) = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
| 74 | 2 73 | eqtrid | ⊢ ( 𝜑 → 𝐸 = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) |
| 75 | 74 | fveq2d | ⊢ ( 𝜑 → ( Homf ‘ 𝐸 ) = ( Homf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) |
| 76 | eqid | ⊢ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) = ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) | |
| 77 | eqid | ⊢ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) = ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) | |
| 78 | 11 12 3 14 76 77 | fullresc | ⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ∧ ( compf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) ) |
| 79 | 78 | simpld | ⊢ ( 𝜑 → ( Homf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
| 80 | 75 79 | eqtrd | ⊢ ( 𝜑 → ( Homf ‘ 𝐸 ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
| 81 | 80 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( Homf ‘ 𝐸 ) = ( Homf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
| 82 | 74 | fveq2d | ⊢ ( 𝜑 → ( compf ‘ 𝐸 ) = ( compf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) |
| 83 | 78 | simprd | ⊢ ( 𝜑 → ( compf ‘ ( 𝐷 ↾s ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
| 84 | 82 83 | eqtrd | ⊢ ( 𝜑 → ( compf ‘ 𝐸 ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
| 85 | 84 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( compf ‘ 𝐸 ) = ( compf ‘ ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
| 86 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 87 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) | |
| 88 | 86 87 | sylbi | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 89 | 88 | simpld | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐶 ∈ Cat ) |
| 90 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) ) | |
| 91 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) → ( 𝐶 ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 92 | 90 91 | sylbi | ⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → ( 𝐶 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 93 | 92 | simpld | ⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 → 𝐶 ∈ Cat ) |
| 94 | 89 93 | jaoi | ⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐶 ∈ Cat ) |
| 95 | 94 | elexd | ⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → 𝐶 ∈ V ) |
| 96 | 95 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐶 ∈ V ) |
| 97 | 2 | ovexi | ⊢ 𝐸 ∈ V |
| 98 | 97 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → 𝐸 ∈ V ) |
| 99 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ∈ V ) | |
| 100 | 70 71 81 85 96 96 98 99 | funcpropd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐶 Func 𝐸 ) = ( 𝐶 Func ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) ) |
| 101 | 100 | breqd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat ( ( Homf ‘ 𝐷 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐷 ) ) ) ) ) ) 𝐺 ) ) |
| 102 | 69 101 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
| 103 | 102 | ex | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∨ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) ) |
| 104 | 7 9 103 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |