This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcres2b.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| funcres2b.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| funcres2b.r | ⊢ ( 𝜑 → 𝑅 ∈ ( Subcat ‘ 𝐷 ) ) | ||
| funcres2b.s | ⊢ ( 𝜑 → 𝑅 Fn ( 𝑆 × 𝑆 ) ) | ||
| funcres2b.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| funcres2b.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : 𝑌 ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | funcres2b | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcres2b.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 2 | funcres2b.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | funcres2b.r | ⊢ ( 𝜑 → 𝑅 ∈ ( Subcat ‘ 𝐷 ) ) | |
| 4 | funcres2b.s | ⊢ ( 𝜑 → 𝑅 Fn ( 𝑆 × 𝑆 ) ) | |
| 5 | funcres2b.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 6 | funcres2b.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : 𝑌 ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 7 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 8 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) | |
| 9 | 7 8 | sylbi | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 10 | 9 | simpld | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐶 ∈ Cat ) |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐶 ∈ Cat ) ) |
| 12 | df-br | ⊢ ( 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) ) | |
| 13 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝐷 ↾cat 𝑅 ) ∈ Cat ) ) | |
| 14 | 12 13 | sylbi | ⊢ ( 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 → ( 𝐶 ∈ Cat ∧ ( 𝐷 ↾cat 𝑅 ) ∈ Cat ) ) |
| 15 | 14 | simpld | ⊢ ( 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 → 𝐶 ∈ Cat ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 → 𝐶 ∈ Cat ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 18 | 3 4 17 | subcss1 | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐷 ) ) |
| 19 | 5 18 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ) |
| 20 | eqid | ⊢ ( 𝐷 ↾cat 𝑅 ) = ( 𝐷 ↾cat 𝑅 ) | |
| 21 | subcrcl | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → 𝐷 ∈ Cat ) | |
| 22 | 3 21 | syl | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 23 | 20 17 22 4 18 | rescbas | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 24 | 23 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑆 ↔ 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) ) |
| 25 | 5 24 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 26 | 19 25 | 2thd | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ↔ 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ↔ 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) ) |
| 28 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : 𝑌 ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 | 28 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) |
| 30 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑅 ∈ ( Subcat ‘ 𝐷 ) ) |
| 31 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑅 Fn ( 𝑆 × 𝑆 ) ) |
| 32 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 33 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 34 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 35 | 33 34 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 36 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 37 | 33 36 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑆 ) |
| 38 | 30 31 32 35 37 | subcss2 | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 | 29 38 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 40 | 39 29 | 2thd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 41 | 40 | anbi2d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 𝐻 𝑦 ) ∧ ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 𝐻 𝑦 ) ∧ ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 42 | df-f | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 𝐻 𝑦 ) ∧ ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 43 | df-f | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 𝐻 𝑦 ) ∧ ran ( 𝑥 𝐺 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 44 | 41 42 43 | 3bitr4g | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 45 | 20 17 22 4 18 | reschom | ⊢ ( 𝜑 → 𝑅 = ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑅 = ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 47 | 46 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 | 47 | feq3d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 49 | 44 48 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 | 49 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 51 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 52 | df-ov | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 53 | 51 52 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 54 | vex | ⊢ 𝑥 ∈ V | |
| 55 | vex | ⊢ 𝑦 ∈ V | |
| 56 | 54 55 | op1std | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 57 | 56 | fveq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 58 | 54 55 | op2ndd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 59 | 58 | fveq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 60 | 57 59 | oveq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 61 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 62 | df-ov | ⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 63 | 61 62 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 64 | 60 63 | oveq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) |
| 65 | 53 64 | eleq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) ) |
| 66 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ∈ V | |
| 67 | ovex | ⊢ ( 𝑥 𝐻 𝑦 ) ∈ V | |
| 68 | 66 67 | elmap | ⊢ ( ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 69 | 65 68 | bitrdi | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 70 | 57 59 | oveq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 71 | 70 63 | oveq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) |
| 72 | 53 71 | eleq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) ) |
| 73 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ∈ V | |
| 74 | 73 67 | elmap | ⊢ ( ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 75 | 72 74 | bitrdi | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 76 | 69 75 | bibi12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 77 | 76 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 78 | 50 77 | sylibr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 79 | ralbi | ⊢ ( ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) → ( ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) | |
| 80 | 78 79 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 81 | 80 | 3anbi3d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐴 × 𝐴 ) ∧ ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐴 × 𝐴 ) ∧ ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
| 82 | elixp2 | ⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐴 × 𝐴 ) ∧ ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) | |
| 83 | elixp2 | ⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐴 × 𝐴 ) ∧ ∀ 𝑧 ∈ ( 𝐴 × 𝐴 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) | |
| 84 | 81 82 83 | 3bitr4g | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 85 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ ( Subcat ‘ 𝐷 ) ) |
| 86 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → 𝑅 Fn ( 𝑆 × 𝑆 ) ) |
| 87 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 88 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 89 | 88 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 90 | 20 85 86 87 89 | subcid | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 91 | 90 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 92 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 93 | 20 17 22 4 18 92 | rescco | ⊢ ( 𝜑 → ( comp ‘ 𝐷 ) = ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 94 | 93 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( comp ‘ 𝐷 ) = ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 95 | 94 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) = ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 96 | 95 | oveqd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) |
| 97 | 96 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ↔ ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) |
| 98 | 97 | 2ralbidv | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) |
| 99 | 98 | 2ralbidv | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) |
| 100 | 91 99 | anbi12d | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ↔ ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) ) |
| 101 | 100 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) ) |
| 102 | 27 84 101 | 3anbi123d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( ( 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) ↔ ( 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) ) ) |
| 103 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 104 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 105 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) | |
| 106 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 107 | 1 17 2 32 103 87 104 92 105 106 | isfunc | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ( 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐷 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) ) ) |
| 108 | eqid | ⊢ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) = ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) | |
| 109 | eqid | ⊢ ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) = ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) | |
| 110 | eqid | ⊢ ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) = ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) | |
| 111 | eqid | ⊢ ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) = ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) | |
| 112 | 20 3 | subccat | ⊢ ( 𝜑 → ( 𝐷 ↾cat 𝑅 ) ∈ Cat ) |
| 113 | 112 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐷 ↾cat 𝑅 ) ∈ Cat ) |
| 114 | 1 108 2 109 103 110 104 111 105 113 | isfunc | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ↔ ( 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐴 × 𝐴 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ ( 𝐷 ↾cat 𝑅 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) ) ) ) ) |
| 115 | 102 107 114 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ) ) |
| 116 | 115 | ex | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ) ) ) |
| 117 | 11 16 116 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ) ) |