This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcres2c.a | |- A = ( Base ` C ) |
|
| funcres2c.e | |- E = ( D |`s S ) |
||
| funcres2c.d | |- ( ph -> D e. Cat ) |
||
| funcres2c.r | |- ( ph -> S e. V ) |
||
| funcres2c.1 | |- ( ph -> F : A --> S ) |
||
| Assertion | funcres2c | |- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcres2c.a | |- A = ( Base ` C ) |
|
| 2 | funcres2c.e | |- E = ( D |`s S ) |
|
| 3 | funcres2c.d | |- ( ph -> D e. Cat ) |
|
| 4 | funcres2c.r | |- ( ph -> S e. V ) |
|
| 5 | funcres2c.1 | |- ( ph -> F : A --> S ) |
|
| 6 | orc | |- ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) |
|
| 7 | 6 | a1i | |- ( ph -> ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) ) |
| 8 | olc | |- ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) |
|
| 9 | 8 | a1i | |- ( ph -> ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) ) |
| 10 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 11 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 12 | eqid | |- ( Homf ` D ) = ( Homf ` D ) |
|
| 13 | inss2 | |- ( S i^i ( Base ` D ) ) C_ ( Base ` D ) |
|
| 14 | 13 | a1i | |- ( ph -> ( S i^i ( Base ` D ) ) C_ ( Base ` D ) ) |
| 15 | 11 12 3 14 | fullsubc | |- ( ph -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) ) |
| 17 | 12 11 | homffn | |- ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) |
| 18 | xpss12 | |- ( ( ( S i^i ( Base ` D ) ) C_ ( Base ` D ) /\ ( S i^i ( Base ` D ) ) C_ ( Base ` D ) ) -> ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) |
|
| 19 | 13 13 18 | mp2an | |- ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) |
| 20 | fnssres | |- ( ( ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) /\ ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) |
|
| 21 | 17 19 20 | mp2an | |- ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) |
| 22 | 21 | a1i | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) |
| 23 | 5 | adantr | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> S ) |
| 24 | 23 | ffnd | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F Fn A ) |
| 25 | 23 | frnd | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ S ) |
| 26 | simpr | |- ( ( ph /\ F ( C Func D ) G ) -> F ( C Func D ) G ) |
|
| 27 | 1 11 26 | funcf1 | |- ( ( ph /\ F ( C Func D ) G ) -> F : A --> ( Base ` D ) ) |
| 28 | 27 | frnd | |- ( ( ph /\ F ( C Func D ) G ) -> ran F C_ ( Base ` D ) ) |
| 29 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 30 | simpr | |- ( ( ph /\ F ( C Func E ) G ) -> F ( C Func E ) G ) |
|
| 31 | 1 29 30 | funcf1 | |- ( ( ph /\ F ( C Func E ) G ) -> F : A --> ( Base ` E ) ) |
| 32 | 31 | frnd | |- ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` E ) ) |
| 33 | 2 11 | ressbasss | |- ( Base ` E ) C_ ( Base ` D ) |
| 34 | 32 33 | sstrdi | |- ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` D ) ) |
| 35 | 28 34 | jaodan | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( Base ` D ) ) |
| 36 | 25 35 | ssind | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( S i^i ( Base ` D ) ) ) |
| 37 | df-f | |- ( F : A --> ( S i^i ( Base ` D ) ) <-> ( F Fn A /\ ran F C_ ( S i^i ( Base ` D ) ) ) ) |
|
| 38 | 24 36 37 | sylanbrc | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> ( S i^i ( Base ` D ) ) ) |
| 39 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 40 | simpr | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> F ( C Func D ) G ) |
|
| 41 | simplrl | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> x e. A ) |
|
| 42 | simplrr | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> y e. A ) |
|
| 43 | 1 10 39 40 41 42 | funcf2 | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 44 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 45 | simpr | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> F ( C Func E ) G ) |
|
| 46 | simplrl | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> x e. A ) |
|
| 47 | simplrr | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> y e. A ) |
|
| 48 | 1 10 44 45 46 47 | funcf2 | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
| 49 | 2 39 | resshom | |- ( S e. V -> ( Hom ` D ) = ( Hom ` E ) ) |
| 50 | 4 49 | syl | |- ( ph -> ( Hom ` D ) = ( Hom ` E ) ) |
| 51 | 50 | ad2antrr | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( Hom ` D ) = ( Hom ` E ) ) |
| 52 | 51 | oveqd | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
| 53 | 52 | feq3d | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) |
| 54 | 48 53 | mpbird | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 55 | 43 54 | jaodan | |- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 56 | 55 | an32s | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 57 | 38 | adantr | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> F : A --> ( S i^i ( Base ` D ) ) ) |
| 58 | simprl | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> x e. A ) |
|
| 59 | 57 58 | ffvelcdmd | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( S i^i ( Base ` D ) ) ) |
| 60 | simprr | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> y e. A ) |
|
| 61 | 57 60 | ffvelcdmd | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( S i^i ( Base ` D ) ) ) |
| 62 | 59 61 | ovresd | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) ) |
| 63 | 59 | elin2d | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( Base ` D ) ) |
| 64 | 61 | elin2d | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( Base ` D ) ) |
| 65 | 12 11 39 63 64 | homfval | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 66 | 62 65 | eqtrd | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 67 | 66 | feq3d | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 68 | 56 67 | mpbird | |- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) ) |
| 69 | 1 10 16 22 38 68 | funcres2b | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) ) |
| 70 | eqidd | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` C ) = ( Homf ` C ) ) |
|
| 71 | eqidd | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` C ) = ( comf ` C ) ) |
|
| 72 | 11 | ressinbas | |- ( S e. V -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
| 73 | 4 72 | syl | |- ( ph -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
| 74 | 2 73 | eqtrid | |- ( ph -> E = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
| 75 | 74 | fveq2d | |- ( ph -> ( Homf ` E ) = ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) ) |
| 76 | eqid | |- ( D |`s ( S i^i ( Base ` D ) ) ) = ( D |`s ( S i^i ( Base ` D ) ) ) |
|
| 77 | eqid | |- ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) = ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) |
|
| 78 | 11 12 3 14 76 77 | fullresc | |- ( ph -> ( ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) /\ ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) ) |
| 79 | 78 | simpld | |- ( ph -> ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 80 | 75 79 | eqtrd | |- ( ph -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 81 | 80 | adantr | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 82 | 74 | fveq2d | |- ( ph -> ( comf ` E ) = ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) ) |
| 83 | 78 | simprd | |- ( ph -> ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 84 | 82 83 | eqtrd | |- ( ph -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 85 | 84 | adantr | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 86 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 87 | funcrcl | |- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 88 | 86 87 | sylbi | |- ( F ( C Func D ) G -> ( C e. Cat /\ D e. Cat ) ) |
| 89 | 88 | simpld | |- ( F ( C Func D ) G -> C e. Cat ) |
| 90 | df-br | |- ( F ( C Func E ) G <-> <. F , G >. e. ( C Func E ) ) |
|
| 91 | funcrcl | |- ( <. F , G >. e. ( C Func E ) -> ( C e. Cat /\ E e. Cat ) ) |
|
| 92 | 90 91 | sylbi | |- ( F ( C Func E ) G -> ( C e. Cat /\ E e. Cat ) ) |
| 93 | 92 | simpld | |- ( F ( C Func E ) G -> C e. Cat ) |
| 94 | 89 93 | jaoi | |- ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. Cat ) |
| 95 | 94 | elexd | |- ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. _V ) |
| 96 | 95 | adantl | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> C e. _V ) |
| 97 | 2 | ovexi | |- E e. _V |
| 98 | 97 | a1i | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> E e. _V ) |
| 99 | ovexd | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) e. _V ) |
|
| 100 | 70 71 81 85 96 96 98 99 | funcpropd | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( C Func E ) = ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 101 | 100 | breqd | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func E ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) ) |
| 102 | 69 101 | bitr4d | |- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |
| 103 | 102 | ex | |- ( ph -> ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) ) |
| 104 | 7 9 103 | pm5.21ndd | |- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |