This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 18-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescbas.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| rescbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| rescbas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| rescbas.h | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | ||
| rescbas.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| Assertion | rescbas | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescbas.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| 2 | rescbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | rescbas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | rescbas.h | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 5 | rescbas.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 6 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 7 | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 8 | 7 | simp1i | ⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
| 9 | 6 8 | setsnid | ⊢ ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 10 | eqid | ⊢ ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s 𝑆 ) | |
| 11 | 10 2 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝐶 ↾s 𝑆 ) ) ) |
| 13 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 14 | 13 | ssex | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 | 1 3 15 4 | rescval2 | ⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
| 18 | 9 12 17 | 3eqtr4a | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |