This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescbas.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| rescbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| rescbas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| rescbas.h | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | ||
| rescbas.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| Assertion | reschom | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescbas.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| 2 | rescbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | rescbas.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | rescbas.h | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 5 | rescbas.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 6 | ovex | ⊢ ( 𝐶 ↾s 𝑆 ) ∈ V | |
| 7 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 8 | 7 | ssex | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 10 | 9 9 | xpexd | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ V ) |
| 11 | fnex | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V ) | |
| 12 | 4 10 11 | syl2anc | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 13 | homid | ⊢ Hom = Slot ( Hom ‘ ndx ) | |
| 14 | 13 | setsid | ⊢ ( ( ( 𝐶 ↾s 𝑆 ) ∈ V ∧ 𝐻 ∈ V ) → 𝐻 = ( Hom ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
| 15 | 6 12 14 | sylancr | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
| 16 | 1 3 9 4 | rescval2 | ⊢ ( 𝜑 → 𝐷 = ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( Hom ‘ 𝐷 ) = ( Hom ‘ ( ( 𝐶 ↾s 𝑆 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) ) |
| 18 | 15 17 | eqtr4d | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐷 ) ) |