This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 7 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | ||
| Assertion | funcestrcsetclem7 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐸 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 9 | 1 2 3 4 5 6 7 8 8 | funcestrcsetclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 10 | 9 | anabsan2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 11 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 12 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑈 ∈ WUni ) |
| 13 | 1 5 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 14 | 3 13 | eqtr4id | ⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
| 15 | 14 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈 ) ) |
| 16 | 15 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝑈 ) |
| 17 | 1 11 12 16 | estrcid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( Id ‘ 𝐸 ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 18 | 10 17 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐸 ) ‘ 𝑋 ) ) = ( ( I ↾ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( I ↾ ( Base ‘ 𝑋 ) ) ) ) |
| 19 | fvex | ⊢ ( Base ‘ 𝑋 ) ∈ V | |
| 20 | 19 19 | pm3.2i | ⊢ ( ( Base ‘ 𝑋 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) |
| 21 | 20 | a1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( Base ‘ 𝑋 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) ) |
| 22 | f1oi | ⊢ ( I ↾ ( Base ‘ 𝑋 ) ) : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑋 ) | |
| 23 | f1of | ⊢ ( ( I ↾ ( Base ‘ 𝑋 ) ) : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑋 ) → ( I ↾ ( Base ‘ 𝑋 ) ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑋 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( I ↾ ( Base ‘ 𝑋 ) ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑋 ) |
| 25 | elmapg | ⊢ ( ( ( Base ‘ 𝑋 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( ( I ↾ ( Base ‘ 𝑋 ) ) ∈ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) ↔ ( I ↾ ( Base ‘ 𝑋 ) ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑋 ) ) ) | |
| 26 | 24 25 | mpbiri | ⊢ ( ( ( Base ‘ 𝑋 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( I ↾ ( Base ‘ 𝑋 ) ) ∈ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 27 | fvresi | ⊢ ( ( I ↾ ( Base ‘ 𝑋 ) ) ∈ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) → ( ( I ↾ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( I ↾ ( Base ‘ 𝑋 ) ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) | |
| 28 | 21 26 27 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( I ↾ ( ( Base ‘ 𝑋 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( I ↾ ( Base ‘ 𝑋 ) ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 29 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( Base ‘ 𝑋 ) ) ) |
| 31 | eqid | ⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) | |
| 32 | 1 3 5 | estrcbasbas | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑋 ) ∈ 𝑈 ) |
| 33 | 2 31 12 32 | setcid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( Id ‘ 𝑆 ) ‘ ( Base ‘ 𝑋 ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 34 | 30 33 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( I ↾ ( Base ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 35 | 18 28 34 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐸 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |