This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | ||
| funcestrcsetc.m | ⊢ 𝑀 = ( Base ‘ 𝑋 ) | ||
| funcestrcsetc.n | ⊢ 𝑁 = ( Base ‘ 𝑌 ) | ||
| Assertion | funcestrcsetclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 8 | funcestrcsetc.m | ⊢ 𝑀 = ( Base ‘ 𝑋 ) | |
| 9 | funcestrcsetc.n | ⊢ 𝑁 = ( Base ‘ 𝑌 ) | |
| 10 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑌 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) | |
| 13 | 11 12 | oveqan12rd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 14 | 9 8 | oveq12i | ⊢ ( 𝑁 ↑m 𝑀 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) |
| 15 | 13 14 | eqtr4di | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝑁 ↑m 𝑀 ) ) |
| 16 | 15 | reseq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |
| 18 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 19 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 20 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑁 ↑m 𝑀 ) ∈ V ) | |
| 21 | 20 | resiexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ∈ V ) |
| 22 | 10 17 18 19 21 | ovmpod | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑁 ↑m 𝑀 ) ) ) |