This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 7 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| funcestrcsetc.s | |- S = ( SetCat ` U ) |
||
| funcestrcsetc.b | |- B = ( Base ` E ) |
||
| funcestrcsetc.c | |- C = ( Base ` S ) |
||
| funcestrcsetc.u | |- ( ph -> U e. WUni ) |
||
| funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
||
| Assertion | funcestrcsetclem7 | |- ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| 2 | funcestrcsetc.s | |- S = ( SetCat ` U ) |
|
| 3 | funcestrcsetc.b | |- B = ( Base ` E ) |
|
| 4 | funcestrcsetc.c | |- C = ( Base ` S ) |
|
| 5 | funcestrcsetc.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
|
| 8 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 9 | 1 2 3 4 5 6 7 8 8 | funcestrcsetclem5 | |- ( ( ph /\ ( X e. B /\ X e. B ) ) -> ( X G X ) = ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ) |
| 10 | 9 | anabsan2 | |- ( ( ph /\ X e. B ) -> ( X G X ) = ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ) |
| 11 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 12 | 5 | adantr | |- ( ( ph /\ X e. B ) -> U e. WUni ) |
| 13 | 1 5 | estrcbas | |- ( ph -> U = ( Base ` E ) ) |
| 14 | 3 13 | eqtr4id | |- ( ph -> B = U ) |
| 15 | 14 | eleq2d | |- ( ph -> ( X e. B <-> X e. U ) ) |
| 16 | 15 | biimpa | |- ( ( ph /\ X e. B ) -> X e. U ) |
| 17 | 1 11 12 16 | estrcid | |- ( ( ph /\ X e. B ) -> ( ( Id ` E ) ` X ) = ( _I |` ( Base ` X ) ) ) |
| 18 | 10 17 | fveq12d | |- ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) ) |
| 19 | fvex | |- ( Base ` X ) e. _V |
|
| 20 | 19 19 | pm3.2i | |- ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) |
| 21 | 20 | a1i | |- ( ( ph /\ X e. B ) -> ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) ) |
| 22 | f1oi | |- ( _I |` ( Base ` X ) ) : ( Base ` X ) -1-1-onto-> ( Base ` X ) |
|
| 23 | f1of | |- ( ( _I |` ( Base ` X ) ) : ( Base ` X ) -1-1-onto-> ( Base ` X ) -> ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) ) |
|
| 24 | 22 23 | ax-mp | |- ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) |
| 25 | elmapg | |- ( ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) -> ( ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) <-> ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) ) ) |
|
| 26 | 24 25 | mpbiri | |- ( ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) -> ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) ) |
| 27 | fvresi | |- ( ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) -> ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) = ( _I |` ( Base ` X ) ) ) |
|
| 28 | 21 26 27 | 3syl | |- ( ( ph /\ X e. B ) -> ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) = ( _I |` ( Base ` X ) ) ) |
| 29 | 1 2 3 4 5 6 | funcestrcsetclem1 | |- ( ( ph /\ X e. B ) -> ( F ` X ) = ( Base ` X ) ) |
| 30 | 29 | fveq2d | |- ( ( ph /\ X e. B ) -> ( ( Id ` S ) ` ( F ` X ) ) = ( ( Id ` S ) ` ( Base ` X ) ) ) |
| 31 | eqid | |- ( Id ` S ) = ( Id ` S ) |
|
| 32 | 1 3 5 | estrcbasbas | |- ( ( ph /\ X e. B ) -> ( Base ` X ) e. U ) |
| 33 | 2 31 12 32 | setcid | |- ( ( ph /\ X e. B ) -> ( ( Id ` S ) ` ( Base ` X ) ) = ( _I |` ( Base ` X ) ) ) |
| 34 | 30 33 | eqtr2d | |- ( ( ph /\ X e. B ) -> ( _I |` ( Base ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |
| 35 | 18 28 34 | 3eqtrd | |- ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |