This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for frlmphl . (Contributed by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmphl.y | |- Y = ( R freeLMod I ) |
|
| frlmphl.b | |- B = ( Base ` R ) |
||
| frlmphl.t | |- .x. = ( .r ` R ) |
||
| frlmphl.v | |- V = ( Base ` Y ) |
||
| frlmphl.j | |- ., = ( .i ` Y ) |
||
| frlmphl.o | |- O = ( 0g ` Y ) |
||
| frlmphl.0 | |- .0. = ( 0g ` R ) |
||
| frlmphl.s | |- .* = ( *r ` R ) |
||
| frlmphl.f | |- ( ph -> R e. Field ) |
||
| frlmphl.m | |- ( ( ph /\ g e. V /\ ( g ., g ) = .0. ) -> g = O ) |
||
| frlmphl.u | |- ( ( ph /\ x e. B ) -> ( .* ` x ) = x ) |
||
| frlmphl.i | |- ( ph -> I e. W ) |
||
| Assertion | frlmphllem | |- ( ( ph /\ g e. V /\ h e. V ) -> ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmphl.y | |- Y = ( R freeLMod I ) |
|
| 2 | frlmphl.b | |- B = ( Base ` R ) |
|
| 3 | frlmphl.t | |- .x. = ( .r ` R ) |
|
| 4 | frlmphl.v | |- V = ( Base ` Y ) |
|
| 5 | frlmphl.j | |- ., = ( .i ` Y ) |
|
| 6 | frlmphl.o | |- O = ( 0g ` Y ) |
|
| 7 | frlmphl.0 | |- .0. = ( 0g ` R ) |
|
| 8 | frlmphl.s | |- .* = ( *r ` R ) |
|
| 9 | frlmphl.f | |- ( ph -> R e. Field ) |
|
| 10 | frlmphl.m | |- ( ( ph /\ g e. V /\ ( g ., g ) = .0. ) -> g = O ) |
|
| 11 | frlmphl.u | |- ( ( ph /\ x e. B ) -> ( .* ` x ) = x ) |
|
| 12 | frlmphl.i | |- ( ph -> I e. W ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( ph /\ g e. V /\ h e. V ) -> I e. W ) |
| 14 | simp2 | |- ( ( ph /\ g e. V /\ h e. V ) -> g e. V ) |
|
| 15 | 1 2 4 | frlmbasmap | |- ( ( I e. W /\ g e. V ) -> g e. ( B ^m I ) ) |
| 16 | 13 14 15 | syl2anc | |- ( ( ph /\ g e. V /\ h e. V ) -> g e. ( B ^m I ) ) |
| 17 | elmapi | |- ( g e. ( B ^m I ) -> g : I --> B ) |
|
| 18 | 16 17 | syl | |- ( ( ph /\ g e. V /\ h e. V ) -> g : I --> B ) |
| 19 | 18 | ffnd | |- ( ( ph /\ g e. V /\ h e. V ) -> g Fn I ) |
| 20 | simp3 | |- ( ( ph /\ g e. V /\ h e. V ) -> h e. V ) |
|
| 21 | 1 2 4 | frlmbasmap | |- ( ( I e. W /\ h e. V ) -> h e. ( B ^m I ) ) |
| 22 | 13 20 21 | syl2anc | |- ( ( ph /\ g e. V /\ h e. V ) -> h e. ( B ^m I ) ) |
| 23 | elmapi | |- ( h e. ( B ^m I ) -> h : I --> B ) |
|
| 24 | 22 23 | syl | |- ( ( ph /\ g e. V /\ h e. V ) -> h : I --> B ) |
| 25 | 24 | ffnd | |- ( ( ph /\ g e. V /\ h e. V ) -> h Fn I ) |
| 26 | inidm | |- ( I i^i I ) = I |
|
| 27 | eqidd | |- ( ( ( ph /\ g e. V /\ h e. V ) /\ x e. I ) -> ( g ` x ) = ( g ` x ) ) |
|
| 28 | eqidd | |- ( ( ( ph /\ g e. V /\ h e. V ) /\ x e. I ) -> ( h ` x ) = ( h ` x ) ) |
|
| 29 | 19 25 13 13 26 27 28 | offval | |- ( ( ph /\ g e. V /\ h e. V ) -> ( g oF .x. h ) = ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) ) |
| 30 | 29 | oveq1d | |- ( ( ph /\ g e. V /\ h e. V ) -> ( ( g oF .x. h ) supp .0. ) = ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) ) |
| 31 | ovexd | |- ( ( ph /\ g e. V /\ h e. V ) -> ( g oF .x. h ) e. _V ) |
|
| 32 | funmpt | |- Fun ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) |
|
| 33 | funeq | |- ( ( g oF .x. h ) = ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) -> ( Fun ( g oF .x. h ) <-> Fun ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) ) ) |
|
| 34 | 32 33 | mpbiri | |- ( ( g oF .x. h ) = ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) -> Fun ( g oF .x. h ) ) |
| 35 | 29 34 | syl | |- ( ( ph /\ g e. V /\ h e. V ) -> Fun ( g oF .x. h ) ) |
| 36 | 1 7 4 | frlmbasfsupp | |- ( ( I e. W /\ g e. V ) -> g finSupp .0. ) |
| 37 | 13 14 36 | syl2anc | |- ( ( ph /\ g e. V /\ h e. V ) -> g finSupp .0. ) |
| 38 | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
|
| 39 | 9 38 | sylib | |- ( ph -> ( R e. DivRing /\ R e. CRing ) ) |
| 40 | 39 | simpld | |- ( ph -> R e. DivRing ) |
| 41 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 42 | 40 41 | syl | |- ( ph -> R e. Ring ) |
| 43 | 42 | 3ad2ant1 | |- ( ( ph /\ g e. V /\ h e. V ) -> R e. Ring ) |
| 44 | 2 7 | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| 45 | 43 44 | syl | |- ( ( ph /\ g e. V /\ h e. V ) -> .0. e. B ) |
| 46 | 2 3 7 | ringlz | |- ( ( R e. Ring /\ x e. B ) -> ( .0. .x. x ) = .0. ) |
| 47 | 43 46 | sylan | |- ( ( ( ph /\ g e. V /\ h e. V ) /\ x e. B ) -> ( .0. .x. x ) = .0. ) |
| 48 | 13 45 18 24 47 | suppofss1d | |- ( ( ph /\ g e. V /\ h e. V ) -> ( ( g oF .x. h ) supp .0. ) C_ ( g supp .0. ) ) |
| 49 | fsuppsssupp | |- ( ( ( ( g oF .x. h ) e. _V /\ Fun ( g oF .x. h ) ) /\ ( g finSupp .0. /\ ( ( g oF .x. h ) supp .0. ) C_ ( g supp .0. ) ) ) -> ( g oF .x. h ) finSupp .0. ) |
|
| 50 | 49 | fsuppimpd | |- ( ( ( ( g oF .x. h ) e. _V /\ Fun ( g oF .x. h ) ) /\ ( g finSupp .0. /\ ( ( g oF .x. h ) supp .0. ) C_ ( g supp .0. ) ) ) -> ( ( g oF .x. h ) supp .0. ) e. Fin ) |
| 51 | 31 35 37 48 50 | syl22anc | |- ( ( ph /\ g e. V /\ h e. V ) -> ( ( g oF .x. h ) supp .0. ) e. Fin ) |
| 52 | 30 51 | eqeltrrd | |- ( ( ph /\ g e. V /\ h e. V ) -> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) e. Fin ) |
| 53 | 13 | mptexd | |- ( ( ph /\ g e. V /\ h e. V ) -> ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) e. _V ) |
| 54 | 45 | elexd | |- ( ( ph /\ g e. V /\ h e. V ) -> .0. e. _V ) |
| 55 | funisfsupp | |- ( ( Fun ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) /\ ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) e. _V /\ .0. e. _V ) -> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) e. Fin ) ) |
|
| 56 | 32 53 54 55 | mp3an2i | |- ( ( ph /\ g e. V /\ h e. V ) -> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) supp .0. ) e. Fin ) ) |
| 57 | 52 56 | mpbird | |- ( ( ph /\ g e. V /\ h e. V ) -> ( x e. I |-> ( ( g ` x ) .x. ( h ` x ) ) ) finSupp .0. ) |