This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . Given two well-orders <. X , R >. and <. Y , S >. of parts of A , one is an initial segment of the other. (The O C_ P hypothesis is in order to break the symmetry of X and Y .) (Contributed by Mario Carneiro, 15-May-2015) (Proof shortened by Peter Mazsa, 23-Sep-2022) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2lem8.x | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | ||
| fpwwe2lem8.y | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | ||
| fpwwe2lem8.m | ⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) | ||
| fpwwe2lem8.n | ⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) | ||
| fpwwe2lem8.s | ⊢ ( 𝜑 → dom 𝑀 ⊆ dom 𝑁 ) | ||
| Assertion | fpwwe2lem8 | ⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2lem8.x | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | |
| 5 | fpwwe2lem8.y | ⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) | |
| 6 | fpwwe2lem8.m | ⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) | |
| 7 | fpwwe2lem8.n | ⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) | |
| 8 | fpwwe2lem8.s | ⊢ ( 𝜑 → dom 𝑀 ⊆ dom 𝑁 ) | |
| 9 | 1 | relopabiv | ⊢ Rel 𝑊 |
| 10 | 9 | brrelex1i | ⊢ ( 𝑋 𝑊 𝑅 → 𝑋 ∈ V ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 12 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 13 | 4 12 | mpbid | ⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 14 | 13 | simprld | ⊢ ( 𝜑 → 𝑅 We 𝑋 ) |
| 15 | 6 | oiiso | ⊢ ( ( 𝑋 ∈ V ∧ 𝑅 We 𝑋 ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 16 | 11 14 15 | syl2anc | ⊢ ( 𝜑 → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 17 | isof1o | ⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) | |
| 18 | f1ofo | ⊢ ( 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 → 𝑀 : dom 𝑀 –onto→ 𝑋 ) | |
| 19 | forn | ⊢ ( 𝑀 : dom 𝑀 –onto→ 𝑋 → ran 𝑀 = 𝑋 ) | |
| 20 | 16 17 18 19 | 4syl | ⊢ ( 𝜑 → ran 𝑀 = 𝑋 ) |
| 21 | 1 2 3 4 5 6 7 8 | fpwwe2lem7 | ⊢ ( 𝜑 → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
| 22 | 21 | rneqd | ⊢ ( 𝜑 → ran 𝑀 = ran ( 𝑁 ↾ dom 𝑀 ) ) |
| 23 | 20 22 | eqtr3d | ⊢ ( 𝜑 → 𝑋 = ran ( 𝑁 ↾ dom 𝑀 ) ) |
| 24 | df-ima | ⊢ ( 𝑁 “ dom 𝑀 ) = ran ( 𝑁 ↾ dom 𝑀 ) | |
| 25 | 23 24 | eqtr4di | ⊢ ( 𝜑 → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
| 26 | imassrn | ⊢ ( 𝑁 “ dom 𝑀 ) ⊆ ran 𝑁 | |
| 27 | 9 | brrelex1i | ⊢ ( 𝑌 𝑊 𝑆 → 𝑌 ∈ V ) |
| 28 | 5 27 | syl | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 29 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑌 𝑊 𝑆 ↔ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 30 | 5 29 | mpbid | ⊢ ( 𝜑 → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 31 | 30 | simprld | ⊢ ( 𝜑 → 𝑆 We 𝑌 ) |
| 32 | 7 | oiiso | ⊢ ( ( 𝑌 ∈ V ∧ 𝑆 We 𝑌 ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 33 | 28 31 32 | syl2anc | ⊢ ( 𝜑 → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 34 | isof1o | ⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) | |
| 35 | f1ofo | ⊢ ( 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 → 𝑁 : dom 𝑁 –onto→ 𝑌 ) | |
| 36 | forn | ⊢ ( 𝑁 : dom 𝑁 –onto→ 𝑌 → ran 𝑁 = 𝑌 ) | |
| 37 | 33 34 35 36 | 4syl | ⊢ ( 𝜑 → ran 𝑁 = 𝑌 ) |
| 38 | 26 37 | sseqtrid | ⊢ ( 𝜑 → ( 𝑁 “ dom 𝑀 ) ⊆ 𝑌 ) |
| 39 | 25 38 | eqsstrd | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
| 40 | 13 | simplrd | ⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) |
| 41 | relxp | ⊢ Rel ( 𝑋 × 𝑋 ) | |
| 42 | relss | ⊢ ( 𝑅 ⊆ ( 𝑋 × 𝑋 ) → ( Rel ( 𝑋 × 𝑋 ) → Rel 𝑅 ) ) | |
| 43 | 40 41 42 | mpisyl | ⊢ ( 𝜑 → Rel 𝑅 ) |
| 44 | relinxp | ⊢ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) | |
| 45 | 43 44 | jctir | ⊢ ( 𝜑 → ( Rel 𝑅 ∧ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
| 46 | 40 | ssbrd | ⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) ) |
| 47 | brxp | ⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) | |
| 48 | 46 47 | imbitrdi | ⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 49 | brinxp2 | ⊢ ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) | |
| 50 | isocnv | ⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) | |
| 51 | 33 50 | syl | ⊢ ( 𝜑 → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 53 | isof1o | ⊢ ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) → ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 ) | |
| 54 | f1ofn | ⊢ ( ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 → ◡ 𝑁 Fn 𝑌 ) | |
| 55 | 52 53 54 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑁 Fn 𝑌 ) |
| 56 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ 𝑌 ) | |
| 57 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 𝑆 𝑦 ) | |
| 58 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 ⊆ 𝑌 ) |
| 59 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ 𝑋 ) | |
| 60 | 58 59 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ 𝑌 ) |
| 61 | isorel | ⊢ ( ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) ) | |
| 62 | 52 56 60 61 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) ) |
| 63 | 57 62 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 64 | fvex | ⊢ ( ◡ 𝑁 ‘ 𝑦 ) ∈ V | |
| 65 | 64 | epeli | ⊢ ( ( ◡ 𝑁 ‘ 𝑥 ) E ( ◡ 𝑁 ‘ 𝑦 ) ↔ ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 66 | 63 65 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 67 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
| 68 | 67 | cnveqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 = ◡ ( 𝑁 ↾ dom 𝑀 ) ) |
| 69 | fnfun | ⊢ ( ◡ 𝑁 Fn 𝑌 → Fun ◡ 𝑁 ) | |
| 70 | funcnvres | ⊢ ( Fun ◡ 𝑁 → ◡ ( 𝑁 ↾ dom 𝑀 ) = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) | |
| 71 | 55 69 70 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
| 72 | 68 71 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 = ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ) |
| 73 | 72 | fveq1d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ‘ 𝑦 ) ) |
| 74 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
| 75 | 59 74 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) |
| 76 | 75 | fvresd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ( ◡ 𝑁 ↾ ( 𝑁 “ dom 𝑀 ) ) ‘ 𝑦 ) = ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 77 | 73 76 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ◡ 𝑁 ‘ 𝑦 ) ) |
| 78 | isocnv | ⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) | |
| 79 | isof1o | ⊢ ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) → ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 ) | |
| 80 | f1of | ⊢ ( ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) | |
| 81 | 16 78 79 80 | 4syl | ⊢ ( 𝜑 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 82 | 81 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 83 | 82 59 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) ∈ dom 𝑀 ) |
| 84 | 77 83 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) |
| 85 | 6 | oicl | ⊢ Ord dom 𝑀 |
| 86 | ordtr1 | ⊢ ( Ord dom 𝑀 → ( ( ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ∧ ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) ) | |
| 87 | 85 86 | ax-mp | ⊢ ( ( ( ◡ 𝑁 ‘ 𝑥 ) ∈ ( ◡ 𝑁 ‘ 𝑦 ) ∧ ( ◡ 𝑁 ‘ 𝑦 ) ∈ dom 𝑀 ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) |
| 88 | 66 84 87 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( ◡ 𝑁 ‘ 𝑥 ) ∈ dom 𝑀 ) |
| 89 | 55 56 88 | elpreimad | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ ( ◡ ◡ 𝑁 “ dom 𝑀 ) ) |
| 90 | imacnvcnv | ⊢ ( ◡ ◡ 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) | |
| 91 | 74 90 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑋 = ( ◡ ◡ 𝑁 “ dom 𝑀 ) ) |
| 92 | 89 91 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → 𝑥 ∈ 𝑋 ) |
| 93 | 92 59 | jca | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 94 | 93 | ex | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 95 | 49 94 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 96 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |
| 97 | 96 | cnveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ◡ 𝑀 = ◡ ( 𝑁 ↾ dom 𝑀 ) ) |
| 98 | 97 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ◡ 𝑀 ‘ 𝑥 ) = ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) ) |
| 99 | 97 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ◡ 𝑀 ‘ 𝑦 ) = ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) |
| 100 | 98 99 | breq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
| 101 | 16 78 | syl | ⊢ ( 𝜑 → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
| 102 | isorel | ⊢ ( ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ) ) | |
| 103 | 101 102 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ◡ 𝑀 ‘ 𝑥 ) E ( ◡ 𝑀 ‘ 𝑦 ) ) ) |
| 104 | eqidd | ⊢ ( 𝜑 → ( 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) ) | |
| 105 | isores3 | ⊢ ( ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ∧ dom 𝑀 ⊆ dom 𝑁 ∧ ( 𝑁 “ dom 𝑀 ) = ( 𝑁 “ dom 𝑀 ) ) → ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) ) | |
| 106 | 33 8 104 105 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) ) |
| 107 | isocnv | ⊢ ( ( 𝑁 ↾ dom 𝑀 ) Isom E , 𝑆 ( dom 𝑀 , ( 𝑁 “ dom 𝑀 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) | |
| 108 | 106 107 | syl | ⊢ ( 𝜑 → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
| 109 | 108 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ) |
| 110 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 111 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 = ( 𝑁 “ dom 𝑀 ) ) |
| 112 | 110 111 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ( 𝑁 “ dom 𝑀 ) ) |
| 113 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 114 | 113 111 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) |
| 115 | isorel | ⊢ ( ( ◡ ( 𝑁 ↾ dom 𝑀 ) Isom 𝑆 , E ( ( 𝑁 “ dom 𝑀 ) , dom 𝑀 ) ∧ ( 𝑥 ∈ ( 𝑁 “ dom 𝑀 ) ∧ 𝑦 ∈ ( 𝑁 “ dom 𝑀 ) ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) | |
| 116 | 109 112 114 115 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑥 ) E ( ◡ ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑦 ) ) ) |
| 117 | 100 103 116 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) |
| 118 | 39 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑌 ) |
| 119 | 118 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑌 ) |
| 120 | 119 113 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ) |
| 121 | 120 | biantrurd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑆 𝑦 ) ) ) |
| 122 | 121 49 | bitr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑆 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
| 123 | 117 122 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
| 124 | 123 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) ) |
| 125 | 48 95 124 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ) ) |
| 126 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 127 | df-br | ⊢ ( 𝑥 ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) | |
| 128 | 125 126 127 | 3bitr3g | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |
| 129 | 128 | eqrelrdv2 | ⊢ ( ( ( Rel 𝑅 ∧ Rel ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ∧ 𝜑 ) → 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
| 130 | 45 129 | mpancom | ⊢ ( 𝜑 → 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) |
| 131 | 39 130 | jca | ⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 ∧ 𝑅 = ( 𝑆 ∩ ( 𝑌 × 𝑋 ) ) ) ) |